Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Consumers’ Intentions to Use Mobile Food Applications

  • Conference paper
  • First Online:
HCI in Business, Government and Organizations (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14038))

Included in the following conference series:

  • 1042 Accesses

Abstract

The use of mobile food applications (MFAs) significantly increased in the past decade. The MFA ecosystem is evolving, and companies need to consider the changing consumer habits to stay competitive. This quantitative study proposes a comprehensive model integrating the Unified Theory of Acceptance and Use of Technology (UTAUT2) and the Theory of Consumption Values (TCV) that examines the factors that affect the behavioural intent to use MFAs. 170 participants were surveyed using the convenience sampling technique. The statistical results and discussions showed that social influence was the most significant predictor on consumers’ intention to use MFAs. Performance expectancy, hedonic motivation, and habit were also positively associated with the consumers’ intention to use MFAs, while effort expectancy, food safety concerns, and affordance values were not. The findings partially supported the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muangmee, C., et al.: Factors determining the behavioral intention of using food delivery apps during COVID-19 pandemics. J. Theor. Appl. Electron. Commer. Res. 16(5), 1297–1310 (2021)

    Article  Google Scholar 

  2. Tandon, A., et al.: Why do people purchase from food delivery apps? A consumer value perspective. J. Retail. Consum. Serv. 63, 102667 (2021)

    Article  Google Scholar 

  3. Statista. Online Food Delivery - Canada | Statista Market Forecast (2022). https://www.statista.com/outlook/dmo/eservices/online-food-delivery/canada

  4. Perri, J.: Which company is winning the restaurant food delivery war? (2022). https://secondmeasure.com/datapoints/food-delivery-services-grubhub-uber-eats-doordash-postmates/

  5. Venkatesh, V., Thong, J.Y., Xu, X.: Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q. 157–178 (2012)

    Google Scholar 

  6. Sheth, J.N., Newman, B.I., Gross, B.L.: Why we buy what we buy: a theory of consumption values. J. Bus. Res. 22(2), 159–170 (1991)

    Article  Google Scholar 

  7. Ahuja, K., et al.: Ordering in: The rapid evolution of food delivery (2021). https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/ordering-in-the-rapid-evolution-of-food-delivery

  8. Lee, S.W., Sung, H.J., Jeon, H.M.: Determinants of continuous intention on food delivery apps: extending UTAUT2 with information quality. Sustainability 11(11), 3141 (2019)

    Article  Google Scholar 

  9. Alalwan, A.A.: Mobile food ordering apps: an empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. Int. J. Inf. Manage. 50, 28–44 (2020)

    Article  Google Scholar 

  10. Gunden, N., Morosan, C., DeFranco, A.: Consumers’ intentions to use online food delivery systems in the USA. Int. J. Contemp. Hospit. Manage. (2020)

    Google Scholar 

  11. Pigatto, G., et al.: Have you chosen your request? Analysis of online food delivery companies in Brazil. Br. Food J. (2017)

    Google Scholar 

  12. Cho, M., Bonn, M.A., Li, J.J.: Differences in perceptions about food delivery apps between single-person and multi-person households. Int. J. Hosp. Manag. 77, 108–116 (2019)

    Article  Google Scholar 

  13. Ray, A., et al.: Why do people use food delivery apps (FDA)? A uses and gratification theory perspective. J. Retail. Consum. Serv. 51, 221–230 (2019)

    Article  Google Scholar 

  14. Kaur, P., et al.: The value proposition of food delivery apps from the perspective of theory of consumption value. Int. J. Contemp. Hospit. Manage. (2021)

    Google Scholar 

  15. Fishbein, M., Ajzen, I.: Predicting and understanding consumer behavior: attitude-behavior correspondence. Underst. Attit. Pred. Soc. Beh. 1(1), 148–172 (1980)

    Google Scholar 

  16. Ajzen, I.: The Theory of Planned Behavior-Organizational Behavior and Human Decision Processes 50 (1991). Ajzen, I.: Perceived behavioural control, self-efficacy, locus of control and the theory of planned behaviour. Journal of Applied Social Psychology, 32(4), 665–683 (2002)

    Google Scholar 

  17. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: a comparison of two theoretical models. Manage. Sci. 35(8), 982–1003 (1989)

    Article  Google Scholar 

  18. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: Extrinsic and intrinsic motivation to use computers in the workplace 1. J. Appl. Soc. Psychol. 22(14), 1111–1132 (1992)

    Article  Google Scholar 

  19. Thompson, R.L., Higgins, C.A., Howell, J.M.: Personal computing: Toward a conceptual model of utilization. MIS Q. 125–143 (1991)

    Google Scholar 

  20. Moore, G.C., Benbasat, I.: Development of an instrument to measure the perceptions of adopting an information technology innovation. Inf. Syst. Res. 2(3), 192–222 (1991)

    Article  Google Scholar 

  21. Compeau, D.R., Higgins, C.A.: Computer self-efficacy: Development of a measure and initial test. MIS Q. 189–211 (1995)

    Google Scholar 

  22. Lai, I.K.W., Shi, G.: The impact of privacy concerns on the intention for continued use of an integrated mobile instant messaging and social network platform. Int. J. Mob. Commun. 13(6), 641–669 (2015)

    Article  Google Scholar 

  23. Madan, K., Yadav, R.: Behavioural intention to adopt mobile wallet: a developing country perspective. J. Indian Bus. Res. (2016)

    Google Scholar 

  24. Shaw, N., Sergueeva, K.: The non-monetary benefits of mobile commerce: extending UTAUT2 with perceived value. Int. J. Inf. Manage. 45, 44–55 (2019)

    Article  Google Scholar 

  25. Chopdar, P.K., Sivakumar, V.: Understanding continuance usage of mobile shopping applications in India: the role of espoused cultural values and perceived risk. Beh. Inf. Technol. 38(1), 42–64 (2019)

    Article  Google Scholar 

  26. Okumus, B., et al.: Psychological factors influencing customers’ acceptance of smartphone diet apps when ordering food at restaurants. Int. J. Hosp. Manag. 72, 67–77 (2018)

    Article  Google Scholar 

  27. Alalwan, A.A., Dwivedi, Y.K., Rana, N.P.: Factors influencing adoption of mobile banking by Jordanian bank customers: extending UTAUT2 with trust. Int. J. Inf. Manage. 37(3), 99–110 (2017)

    Article  Google Scholar 

  28. Kijsanayotin, B., Pannarunothai, S., Speedie, S.M.: Factors influencing health information technology adoption in Thailand’s community health centers: Applying the UTAUT model. Int. J. Med. Informatics 78(6), 404–416 (2009)

    Article  Google Scholar 

  29. Agarwal, V., Sahu, R.: Predicting repeat usage intention towards O2O food delivery: extending UTAUT2 with user gratifications and bandwagoning. J. Foodservice Bus. Res. 1–41 (2021)

    Google Scholar 

  30. Palau-Saumell, R., et al.: User acceptance of mobile apps for restaurants: an expanded and extended UTAUT-2. Sustainability 11(4), 1210 (2019)

    Article  Google Scholar 

  31. Zhao, Y., Bacao, F.: What factors determining customer continuingly using food delivery apps during 2019 novel coronavirus pandemic period? Int. J. Hosp. Manag. 91, 102683 (2020)

    Article  Google Scholar 

  32. Kaur, P., et al.: Why people use online social media brand communities: A consumption value theory perspective. Online Inf. Rev. (2018)

    Google Scholar 

  33. Mäntymäki, M., Salo, J.: Why do teens spend real money in virtual worlds? A consumption values and developmental psychology perspective on virtual consumption. Int. J. Inf. Manage. 35(1), 124–134 (2015)

    Article  Google Scholar 

  34. Talwar, S., et al.: Why do people purchase from online travel agencies (OTAs)? A consumption values perspective. Int. J. Hosp. Manag. 88, 102534 (2020)

    Article  Google Scholar 

  35. Wang, H.-Y., Liao, C., Yang, L.-H.: What affects mobile application use? The roles of consumption values. Int. J. Mark. Stud. 5(2), 11 (2013)

    Google Scholar 

  36. Zolkepli, I.A.: Domination of mobile apps market: the effect of apps value on apps rating and apps cost in determining adoption. In: Proceedings of Penang International Symposium on Advanced in Social Sciences and Humanities, Royale Bintang, Penang (2016)

    Google Scholar 

  37. Choe, J.Y.J., Kim, S.S.: Effects of tourists’ local food consumption value on attitude, food destination image, and behavioral intention. Int. J. Hosp. Manag. 71, 1–10 (2018)

    Article  Google Scholar 

  38. Karjaluoto, H., et al.: Consumption values and mobile banking services: Understanding the urban–rural dichotomy in a developing economy. Int. J. Bank Mark. (2021)

    Google Scholar 

  39. Omigie, N.O., et al.: Customer pre-adoption choice behavior for M-PESA mobile financial services: extending the theory of consumption values. Ind. Manage. Data Syst. (2017)

    Google Scholar 

  40. Peng, N., Chen, A., Hung, K.-P.: Dining at luxury restaurants when traveling abroad: incorporating destination attitude into a luxury consumption value model. J. Travel Tour. Mark. 37(5), 562–576 (2020)

    Article  Google Scholar 

  41. Thomé, K.M., Pinho, G.M., Hoppe, A.: Consumption values and physical activities: consumers’ healthy eating choices. Br. Food J. (2018)

    Google Scholar 

  42. Gupta, A., Dogra, N., George, B.: What determines tourist adoption of smartphone apps? An analysis based on the UTAUT-2 framework. J. Hospit. Tourism Technol. (2018)

    Google Scholar 

  43. Gârdan, D.A., et al.: Enhancing consumer experience through development of implicit attitudes using food delivery applications. J. Theor. Appl. Electron. Commer. Res. 16(7), 2858–2882 (2021)

    Article  Google Scholar 

  44. Venkatesh, V., et al.: User acceptance of information technology: Toward a unified view, 425–478. MIS Q. (2003)

    Google Scholar 

  45. Jeon, H.M., Sung, H.J., Kim, H.Y.: Customers’ acceptance intention of self-service technology of restaurant industry: expanding UTAUT with perceived risk and innovativeness. Serv. Bus. 14(4), 533–551 (2020). https://doi.org/10.1007/s11628-020-00425-6

    Article  Google Scholar 

  46. Evans, N.J., et al.: Disclosing Instagram influencer advertising: the effects of disclosure language on advertising recognition, attitudes, and behavioral intent. J. Interact. Advert. 17(2), 138–149 (2017)

    Article  Google Scholar 

  47. Cao, Q., Niu, X.: Integrating context-awareness and UTAUT to explain alipay user adoption. Int. J. Ind. Ergon. 69, 9–13 (2019)

    Article  Google Scholar 

  48. de Sena Abrahão, R., Moriguchi, S.N., Andrade, D.F.: Intention of adoption of mobile payment: an analysis in the light of the Unified Theory of Acceptance and Use of Technology (UTAUT). RAI Revista de Administração e Inovação 13(3), 221–230 (2016)

    Google Scholar 

  49. Morosan, C., DeFranco, A.: It’s about time: revisiting UTAUT2 to examine consumers’ intentions to use NFC mobile payments in hotels. Int. J. Hosp. Manag. 53, 17–29 (2016)

    Article  Google Scholar 

  50. Singh, M., Matsui, Y.: How long tail and trust affect online shopping behavior: an extension to UTAUT2 framework. Pacific Asia J. Assoc. Inf. Syst. 9(4), 2 (2017)

    Google Scholar 

  51. digitaltrends. The best food-delivery apps for 2021 (2021). https://www.digitaltrends.com/home/best-food-delivery-apps/

  52. Tamilmani, K., Rana, N.P., Dwivedi, Y.K.: Consumer acceptance and use of information technology: a meta-analytic evaluation of UTAUT2. Inf. Syst. Front. 23(4), 987–1005 (2021)

    Article  Google Scholar 

  53. Suhartanto, D., et al.: Loyalty toward online food delivery service: the role of e-service quality and food quality. J. Foodserv. Bus. Res. 22(1), 81–97 (2019)

    Article  Google Scholar 

  54. Liu, P., Ma, L.: Food scandals, media exposure, and citizens’ safety concerns: a multilevel analysis across Chinese cities. Food Policy 63, 102–111 (2016)

    Article  Google Scholar 

  55. Nayak, R., Waterson, P.: The assessment of food safety culture: an investigation of current challenges, barriers and future opportunities within the food industry. Food Control 73, 1114–1123 (2017)

    Article  Google Scholar 

  56. Chuah, S.H.-W., et al.: Wearable technologies: the role of usefulness and visibility in smartwatch adoption. Comput. Hum. Behav. 65, 276–284 (2016)

    Article  Google Scholar 

  57. Yang, H.C.: Bon Appétit for apps: young American consumers’ acceptance of mobile applications. J. Comput. Inf. Syst. 53(3), 85–96 (2013)

    Google Scholar 

  58. Hair, J.F., et al.: A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 3rd ed. ed. SAGE Publications, Inc. (2021)

    Google Scholar 

  59. Henseler, J., Sarstedt, M.: Goodness-of-fit indices for partial least squares path modeling. Comput. Stat. 28(2), 565–580 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Cronbach, L.J., Meehl, P.E.: Construct validity in psychological tests. Psychol. Bull. 52(4), 281 (1955)

    Article  Google Scholar 

  61. Chin, W.W.: The partial least squares approach to structural equation modeling. Modern Meth. Bus. Res. 295(2), 295–336 (1998)

    Google Scholar 

  62. Hair Jr, J.F., et al.: Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Rev. (2014)

    Google Scholar 

  63. Yuan, S., et al.: An investigation of users’ continuance intention towards mobile banking in China. Inf. Dev. 32(1), 20–34 (2016)

    Article  Google Scholar 

  64. Bonfield, E.H.: Attitude, social influence, personal norm, and intention interactions as related to brand purchase behavior. J. Mark. Res. 11(4), 379–389 (1974)

    Article  Google Scholar 

  65. Teo, L.X., Leng, H.K., Phua, Y.X.P.: Marketing on Instagram: Social influence and image quality on perception of quality and purchase intention. Int. J. Sports Mark. Sponsorship (2018)

    Google Scholar 

  66. Alalwan, A.A.: Investigating the impact of social media advertising features on customer purchase intention. Int. J. Inf. Manage. 42, 65–77 (2018)

    Article  Google Scholar 

  67. Daneshvary, R., Schwer, R.K.: The association endorsement and consumers’ intention to purchase. J. Consumer Mark. (2000)

    Google Scholar 

  68. Watsky, D.: DoorDash, Grubhub, Uber Eats: We Finally Figured Out Which One Is Cheapest (2022). https://www.cnet.com/home/kitchen-and-household/doordash-grubhub-uber-eats-we-finally-figured-out-which-one-is-cheapest/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralston Kwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kwan, R., Shaw, N. (2023). Consumers’ Intentions to Use Mobile Food Applications. In: Nah, F., Siau, K. (eds) HCI in Business, Government and Organizations. HCII 2023. Lecture Notes in Computer Science, vol 14038. Springer, Cham. https://doi.org/10.1007/978-3-031-35969-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35969-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35968-2

  • Online ISBN: 978-3-031-35969-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics