Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Combining Outlierness Scores and Feature Extraction Techniques for Improvement of OoD and Adversarial Attacks Detection in DNNs

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

Out-of-distribution (OoD) detection is one of the challenges for deep networks used for image recognition. Although recent works have proposed several state-of-the-art methods of OoD detection, no clear recommendation exists as to which of the methods is inherently best. Our studies and recent results suggest that there is no universally best OoD detector, as performance depends on the in-distribution (ID) and OoD benchmark datasets. This leaves ML practitioners with an unsolvable problem - which OoD methods should be used in real-life applications where limited knowledge is available on the structure of ID and OoD data. To address this problem, we propose a novel, ensemble-based OoD detector that combines outlierness scores from different categories: prediction score-based, (Mahalanobis) distance-based, and density-based. We showed that our method consistently outperforms individual SoTA algorithms in the task of (i) the detection of OoD samples and (ii) the detection of adversarial examples generated by a variety of attacks (including CW, DeepFool, FGSM, OnePixel, etc.). Adversarial attacks commonly rely on the specific technique of CNN feature extraction (GAP - global average pooling). We found that detecting adversarial examples as OoD significantly improves if we also ensemble over different feature extraction methods(such as GAP, cross-dimensional weighting (CroW), and layer-concatenated GAP). Our method can be readily applied with popular DNN architectures and does not require additional representation retraining for OoD detection (All results are fully reproducible, the source code is available at https://github.com/twalkowiak/WNN-OOD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The detailed results are available https://github.com/twalkowiak/WNN-OOD.

References

  1. Andriushchenko, M., Croce, F., Flammarion, N., Hein, M.: Square attack: a query-efficient black-box adversarial attack via random search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 484–501. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_29

    Chapter  Google Scholar 

  2. Bendale, A., Boult, T.E.: Towards open set deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1563–1572 (2016)

    Google Scholar 

  3. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. SIGMOD Rec. 29(2), 93–104 (2000). https://doi.org/10.1145/335191.335388

  4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

    Google Scholar 

  5. Du, X., Wang, Z., Cai, M., Li, S.: Towards unknown-aware learning with virtual outlier synthesis. In: Proceedings of the International Conference on Learning Representations (2022)

    Google Scholar 

  6. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)

  9. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier exposure. In: Proceedings of the International Conference on Learning Representations (2019)

    Google Scholar 

  10. Hsu, Y.C., Shen, Y., Jin, H., Kira, Z.: Generalized odin: detecting out-of-distribution image without learning from out-of-distribution data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10951–10960 (2020)

    Google Scholar 

  11. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  12. Kalantidis, Y., Mellina, C., Osindero, S.: Cross-dimensional weighting for aggregated deep convolutional features. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 685–701. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46604-0_48

    Chapter  Google Scholar 

  13. Kim, H.: Torchattacks: a pytorch repository for adversarial attacks. arXiv preprint arXiv:2010.01950 (2020)

  14. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 7167–7177. NIPS’18, Curran Associates Inc., Red Hook, NY, USA (2018)

    Google Scholar 

  15. Li, Y., Xu, Y., Wang, J., Miao, Z., Zhang, Y.: MS-RMAC: multiscale regional maximum activation of convolutions for image retrieval. IEEE Signal Process. Lett. 24(5), 609–613 (2017)

    Article  Google Scholar 

  16. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  17. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  18. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  19. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  20. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

    Google Scholar 

  21. Ren, J., Fort, S., Liu, J., Roy, A.G., Padhy, S., Lakshminarayanan, B.: A simple fix to mahalanobis distance for improving near-ood detection. arXiv preprint arXiv:2106.09022 (2021)

  22. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV 2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  23. Sehwag, V., Chiang, M., Mittal, P.: SSD: a unified framework for self-supervised outlier detection. In: International Conference on Learning Representations (2021)

    Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  25. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput. 23(5), 828–841 (2019)

    Article  Google Scholar 

  26. Sun, Y., Ming, Y., Zhu, X., Li, Y.: Out-of-distribution detection with deep nearest neighbors. arXiv preprint arXiv:2204.06507 (2022)

  27. Tack, J., Mo, S., Jeong, J., Shin, J.: CSI: novelty detection via contrastive learning on distributionally shifted instances. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 11839–11852. Curran Associates, Inc. (2020)

    Google Scholar 

  28. Tajwar, F., Kumar, A., Xie, S.M., Liang, P.: No true state-of-the-art? OOD detection methods are inconsistent across datasets. arXiv preprint arXiv:2109.05554 (2021)

  29. Ting, K.M., Witten, I.H.: Issues in stacked generalization. J. Artif. Int. Res. 10(1), 271–289 (1999)

    Google Scholar 

  30. Walkowiak, T., Datko, S., Maciejewski, H.: Utilizing local outlier factor for open-set classification in high-dimensional data - case study applied for text documents. In: Bi, Y., Bhatia, R., Kapoor, S. (eds.) IntelliSys 2019. AISC, vol. 1037, pp. 408–418. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29516-5_33

    Chapter  Google Scholar 

  31. Wei, X.S., Luo, J.H., Wu, J., Zhou, Z.H.: Selective convolutional descriptor aggregation for fine-grained image retrieval. IEEE Trans. Image Process. 26(6), 2868–2881 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Winkens, J., et al.: Contrastive training for improved out-of-distribution detection. arXiv preprint arXiv:2007.05566 (2020)

  33. Xingjun, M., et al.: Characterizing adversarial subspaces using local intrinsic dimensionality. In: ICLR (2018)

    Google Scholar 

  34. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805–2824 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henryk Maciejewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Walkowiak, T., Szyc, K., Maciejewski, H. (2023). Combining Outlierness Scores and Feature Extraction Techniques for Improvement of OoD and Adversarial Attacks Detection in DNNs. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14073. Springer, Cham. https://doi.org/10.1007/978-3-031-35995-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35995-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35994-1

  • Online ISBN: 978-3-031-35995-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics