Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Epistemic and Aleatoric Uncertainty Quantification and Surrogate Modelling in High-Performance Multiscale Plasma Physics Simulations

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

This work suggests several methods of uncertainty treatment in multiscale modelling and describes their application to a system of coupled turbulent transport simulations of a tokamak plasma. We propose a method to quantify the usually aleatoric uncertainty of a system in a quasistationary state, estimating the mean values and their errors for quantities of interest, which is average heat fluxes in the case of turbulence simulations. The method defines the stationarity of the system and suggests a way to balance the computational cost of simulation and the accuracy of estimation. This allows, contrary to many approaches, to incorporate of aleatoric uncertainties in the analysis of the model and to have a quantifiable decision for simulation runtime. Furthermore, the paper describes methods for quantifying the epistemic uncertainty of a model and the results of such a procedure for turbulence simulations, identifying the model’s sensitivity to particular input parameters and sensitivity to uncertainties in total. Finally, we introduce a surrogate model approach based on Gaussian Process Regression and present a preliminary result of training and analysing the performance of such a model based on turbulence simulation data. Such an approach shows a potential to significantly decrease the computational cost of the uncertainty propagation for the given model, making it feasible on current HPC systems.

Supported by organisation “Munich School of Data Science”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EasySurrogate github. https://github.com/wedeling/EasySurrogate. Accessed 2 Mar 2023

  2. Borgdorff, J., et al.: Distributed multiscale computing with MUSCLE 2, the multiscale coupling library and environment. J. Comput. Sci. 5(5), 719–731 (2014). https://doi.org/10.1016/j.jocs.2014.04.004

    Article  Google Scholar 

  3. Brajard, J., et al.: Combining data assimilation and machine learning to infer unresolved scale parametrization. Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci. 379(2194) (2021). https://doi.org/10.1098/rsta.2020.0086

  4. Coster, D., et al.: The European transport solver. IEEE Trans. Plasma Sci. 38(9), 2085–2092 (2010). https://doi.org/10.1109/TPS.2010.2056707

    Article  Google Scholar 

  5. Coster, D., et al.: Building a turbulence-transport workflow incorporating uncertainty quantification for predicting core profiles in a tokamak plasma. Nuclear Fusion (2021)

    Google Scholar 

  6. Edeling, W., et al.: The impact of uncertainty on predictions of the CovidSim epidemiological code. Nat. Comput. Sci. 1(2). https://doi.org/10.1038/s43588-021-00028-9

  7. Falchetto, G., et al.: The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results. Nucl. Fusion 54(4), 043018 (2014). https://doi.org/10.1088/0029-5515/54/4/043018, 00005

  8. Imbeaux, F., et al.: A generic data structure for integrated modelling of tokamak physics and subsystems. Comput. Phys. Commun. 181(6), 987–998 (2010). https://doi.org/10.1016/j.cpc.2010.02.001

    Article  MATH  Google Scholar 

  9. Jancauskas, V., Lakhlili, J., Richardson, R., Wright, D.: EasyVVUQ: verification, validation and uncertainty quantification for HPC simulations (2021). https://github.com/UCL-CCS/EasyVVUQ

  10. Leiter, K., Barnes, B., Becker, R., Knap, J.: Accelerated scale-bridging through adaptive surrogate model evaluation. J. Comput. Sci. 27, 91–106 (2018). https://doi.org/10.1016/j.jocs.2018.04.010

    Article  Google Scholar 

  11. Luk, O., et al.: ComPat framework for multiscale simulations applied to fusion plasmas. Comput. Phys. Commun. 239, 126–133 (2019). https://doi.org/10.1016/j.cpc.2018.12.021

    Article  Google Scholar 

  12. Lütjens, H., Bondeson, A., Sauter, O.: The CHEASE code for toroidal MHD equilibria. Comput. Phys. Commun. 97(3), 219–260 (1996)

    Article  MATH  Google Scholar 

  13. Piontek, T., et al.: Development of science gateways using QCG—lessons learned from the deployment on large scale distributed and HPC infrastructures. J. Grid Comput. 14(4), 559–573 (2016). https://doi.org/10.1007/s10723-016-9384-9

    Article  Google Scholar 

  14. Preuss, R., von Toussaint, U.: Global optimization employing Gaussian process-based Bayesian surrogates. Entropy 20 (2018). https://doi.org/10.3390/e20030201

  15. Rasmussen, C.E., W.K.: Gaussian Processes for Machine Learning. The MIT Press (2006). https://doi.org/10.7551/mitpress/3206.001.0001

  16. Scott, B.D.: Free-energy conservation in local gyrofluid models. Phys. Plasmas 12(10), 102307 (2005). https://doi.org/10.1063/1.2064968

    Article  MathSciNet  Google Scholar 

  17. Sobol, I.: On sensitivity estimation for nonlinear mathematical models. Math. Model. 2(1), 112–118 (1990)

    MATH  Google Scholar 

  18. Sullivan, T.: Introduction to Uncertainty Quantification. TAM, vol. 63. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23395-6

    Book  MATH  Google Scholar 

  19. Vassaux, M., et al.: Ensembles are required to handle aleatoric and parametric uncertainty in molecular dynamics simulation. J. Chem. Theory Comput. 17(8) (2021). https://doi.org/10.1021/acs.jctc.1c00526

  20. Veen, L.E., Hoekstra, A.G.: Easing multiscale model design and coupling with MUSCLE 3. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12142, pp. 425–438. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_33

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors of this paper would like to acknowledge the support of the Poznan Supercomputer and Networking Centre (PSNC) and Max-Planck Computational Data Facility (MPCDF). Research by Yehor Yudin is funded by the Helmholtz Association under the “Munich School for Data Science - MuDS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehor Yudin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yudin, Y., Coster, D., von Toussaint, U., Jenko, F. (2023). Epistemic and Aleatoric Uncertainty Quantification and Surrogate Modelling in High-Performance Multiscale Plasma Physics Simulations. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10476. Springer, Cham. https://doi.org/10.1007/978-3-031-36027-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36027-5_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36026-8

  • Online ISBN: 978-3-031-36027-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics