Abstract
Quantum computing is a rapidly growing field of science with many potential applications. One such field is machine learning applied in many areas of science and industry. Machine learning approaches can be enhanced using quantum algorithms and work effectively, as demonstrated in this paper. We present our experimental attempts to explore Quantum Support Vector Machine (QSVM) capabilities and test their performance on the collected well-known images of handwritten digits for image classification called the MNIST benchmark. A variational quantum circuit was adopted to build the quantum kernel matrix and successfully applied to the classical SVM algorithm. The proposed model obtained relatively high accuracy, up to 99%, tested on noiseless quantum simulators. Finally, we performed computational experiments on real and recently setup IBM Quantum systems and achieved promising results of around 80% accuracy, demonstrating and discussing the QSVM applicability and possible future improvements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Al-Ogbi, S., Ashour, A., Felemban, M.: Quantum image classification on NISQ devices. In: 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN), pp. 1–7 (2022). https://doi.org/10.1109/CICN56167.2022.10008259
Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 2010 20th International Conference on Pattern Recognition, pp. 3121–3124. IEEE (2010)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
Cristianini, N., Shawe-Taylor, J., Elisseeff, A., Kandola, J.: On kernel-target alignment. In: Advances in Neural Information Processing Systems, vol. 14 (2001)
Dawid, A., et al.: Modern applications of machine learning in quantum sciences. arXiv preprint arXiv:2204.04198 (2022)
Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014)
Glick, J.R., et al.: Covariant quantum kernels for data with group structure. arXiv preprint arXiv:2105.03406 (2021)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)
Havlíček, V., et al.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019)
IBM: IBM Quantum – quantum-computing.ibm.com. https://quantum-computing.ibm.com/. Accessed 03 Feb 2023
Kandala, A., et al.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671), 242–246 (2017)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., Killoran, N.: Quantum embeddings for machine learning. arXiv preprint arXiv:2001.03622 (2020)
Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
Park, S., Park, D.K., Rhee, J.K.K.: Variational quantum approximate support vector machine with inference transfer. Sci. Rep. 13(1), 3288 (2023)
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)
Qiskit contributors: Qiskit: an open-source framework for quantum computing (2023). https://doi.org/10.5281/zenodo.2573505
Schuld, M., Killoran, N.: Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122(4), 040504 (2019)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)
Singh, G., Kaur, M., Singh, M., Kumar, Y., et al.: Implementation of quantum support vector machine algorithm using a benchmarking dataset. Indian J. Pure Appl. Phys. (IJPAP) 60(5), 407–414 (2022)
Spall, J.C.: An overview of the simultaneous perturbation method for efficient optimization. J. Hopkins APL Tech. Dig. 19(4), 482–492 (1998)
Van der Walt, S., et al.: Rescale, resize, and downscale—skimage v0.19.2 docs – scikit-image.org. https://scikit-image.org/docs/stable/auto_examples/transform/plot_rescale.html (2014). Accessed 03 Feb 2023
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Slysz, M., Kurowski, K., Waligóra, G., Węglarz, J. (2023). Exploring the Capabilities of Quantum Support Vector Machines for Image Classification on the MNIST Benchmark. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14077. Springer, Cham. https://doi.org/10.1007/978-3-031-36030-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-36030-5_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36029-9
Online ISBN: 978-3-031-36030-5
eBook Packages: Computer ScienceComputer Science (R0)