Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Feature Importances as a Tool for Root Cause Analysis in Time-Series Events

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

In an industrial setting, predicting the remaining useful life-time of equipment and systems is crucial for ensuring efficient operation, reducing downtime, and prolonging the life of costly assets. There are state-of-the-art machine learning methods supporting this task. However, in this paper, we argue, that both efficiency and understandability can be improved by the use of explainable AI methods that analyze the importance of features used by the machine learning model. In the paper, we analyze the feature importance before a failure occurs to identify events in which an increase in importance can be observed and based on that indicate attributes with the most influence on the failure. We demonstrate how the analyses of Shap values near the occurrence of failures can help identify the specific features that led to the failure. This in turn can help in identifying the root cause of the problem and developing strategies to prevent future failures. Additionally, it can be used to identify areas where maintenance or replacement is needed to prevent failure and prolong the useful life of a system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Guyon, I., Dror, G., Lemaire, V., Taylor, G., Silver, D. (eds.) Proceedings of ICML Workshop on Unsupervised and Transfer Learning. Proceedings of Machine Learning Research, vol. 27, pp. 37–49. PMLR, Bellevue, Washington, USA (02 Jul 2012). https://proceedings.mlr.press/v27/baldi12a.html

  2. Bank, D., Koenigstein, N., Giryes, R.: Autoencoders (2020). arXiv preprint arXiv:2003.05991

  3. Basora, L., Olive, X., Dubot, T.: Recent advances in anomaly detection methods applied to aviation. Aerospace 6(11) 2226–4310 (2019). https://doi.org/10.3390/aerospace6110117, https://www.mdpi.com/2226-4310/6/11/117

  4. Bentéjac, C., Csörgo, A., Martínez-Muñoz, G.: A comparative analysis of xgboost. arXiv preprint arXiv:1911.01914 (2019)

  5. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: A survey. arXiv preprint arXiv:1901.03407 (2019)

  6. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. arXiv preprint arXiv:1603.02754 (2016)

  7. Chen, Z., Yeo, C., Lee, B.S., Lau, C.T.: Autoencoder-based network anomaly detection. In: 2018 Wireless Telecommunications Symposium (WTS), pp. 1–5 (2018)

    Google Scholar 

  8. Isermann, R.: Model-based fault-detection and diagnosis - status and applications. Ann. Rev. Control 29(1), 71–85 (2005). https://doi.org/10.1016/j.arcontrol.2004.12.002, https://www.sciencedirect.com/science/article/pii/S1367578805000052

  9. Jakubowski, J., Stanisz, P., Bobek, S., Nalepa, G.J.: Anomaly detection in asset degradation process using variational autoencoder and explanations. Sensors 22(1), 291 (2022). https://doi.org/10.3390/s22010291, https://www.mdpi.com/1424-8220/22/1/291

  10. Juodelyte, D., Cheplygina, V., Graversen, T., Bonnet, P.: Predicting bearings degradation stages for predictive maintenance in the pharmaceutical industry. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3107–3115 (2022)

    Google Scholar 

  11. Kaiser, K., Gebraeel, N.: Predictive maintenance management using sensor-based degradation models. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 39, 840–849 (2009). https://doi.org/10.1109/TSMCA.2009.2016429

  12. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. arXiv preprint arXiv:1705.07874 (2017)

  13. Mehdi, G., Naderi, D., Ceschini, G.F., Roshchin, M.: Model-based reasoning approach for automated failure analysis : An industrial gas turbine application (2015). https://doi.org/10.36001/phmconf.2015.v7i1.2719

  14. Molnar, C.: Interpretable Machine Learning (2022). https://christophm.github.io/interpretable-ml-book

  15. Principi, E., Rossetti, D., Squartini, S., Piazza, F.: Unsupervised electric motor fault detection by using deep autoencoders. IEEE/CAA J. Autom. Sin. 6(2), 441–451 (2019). https://doi.org/10.1109/JAS.2019.1911393

    Article  Google Scholar 

  16. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations by Error Propagation, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  17. Saxena, A., Goebel, K., Simon, D., Eklund, N.: Damage propagation modeling for aircraft engine run-to-failure simulation. In: 2008 International Conference on Prognostics and Health Management, pp. 1–9 (2008). https://doi.org/10.1109/PHM.2008.4711414

  18. Sen, P.C., Hajra, M., Ghosh, M.: Supervised classification algorithms in machine learning: a survey and review. In: Mandal, J.K., Bhattacharya, D. (eds.) Emerging Technology in Modelling and Graphics, pp. 99–111. Springer Singapore, Singapore (2020)

    Chapter  Google Scholar 

Download references

Acknowledgements

This paper is funded from the XPM (Explainable Predictive Maintenance) project funded by the National Science Center, Poland under CHIST-ERA programme Grant Agreement No. \(857925 (NCN UMO-2020/02/Y/ST6/00070)\)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Kuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuk, M., Bobek, S., Veloso, B., Rajaoarisoa, L., Nalepa, G.J. (2023). Feature Importances as a Tool for Root Cause Analysis in Time-Series Events. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14077. Springer, Cham. https://doi.org/10.1007/978-3-031-36030-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36030-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36029-9

  • Online ISBN: 978-3-031-36030-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics