Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Node Cooperation Enforcement Scheme for Enhancing Quality of Service in MANETs Using Machine Learning Approach

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2023)

Abstract

Mobile Adhoc network (MANET) is a wireless and infrastructure less network where nodes may behave non cooperative due to limited resource constraint. In this paper a node cooperation enforcement scheme assess the node’s trust with respect to multiple parameters namely packet forwarding potential, node energy, throughput, delay. In MANETs due to the node’s limited resource nature and frequent and unpredictable network topology, it is not suffice to consider node’s current trust also it is required to consider nodes previous behavior for which in this paper a predictive model used to decide the node is trusted or not. The proposed Machine Learning based Node Cooperation Enforcement Scheme (MLNCES) performance is analyzed experimentally. In simulation results, the proposed method MLNCES outperforms the FCOPRAS-NCETE and GTF-GDMT approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sirisala, N.R., Yarava, A., Reddy, Y.C.A.P., Poola, V.: A novel trust recommendation model in online social networks using soft computing methods. Concurr. Comput. Pract. Exp. 34, e7153 (2022). https://doi.org/10.1002/cpe.7153

    Article  Google Scholar 

  2. Thakkar, J.J.: Multi-objective optimization on the basis of ratio analysis method (MOORA). In: Multi-Criteria Decision Making. SSDC, vol. 336, pp. 191–198. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4745-8_11

  3. Uzun, B., Taiwo, M., Syidanova, A., Uzun Ozsahin, D.: The technique for order of preference by similarity to ideal solution (TOPSIS). In: Uzun Ozsahin, D., Gökçekuş, H., Uzun, B., LaMoreaux, J. (eds.) Application of Multi-Criteria Decision Analysis in Environmental and Civil Engineering. PPES, pp. 25–30. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64765-0_4

    Chapter  Google Scholar 

  4. Arsyah, U.I., Jalinus, N., Syahril, A., Arsyah, R.H., Pratiwi, M.: Analysis of the simple additive weighting method in educational aid decision making. Turk. J. Comput. Math. Edu. 12(14), 2389–2396 (2021)

    Google Scholar 

  5. Uzun, B., Almasri, A., Uzun Ozsahin, D.: Preference ranking organization method for enrichment evaluation (PROMETHEE). In: Uzun Ozsahin, D., Gökçekuş, H., Uzun, B., LaMoreaux, J. (eds.) Application of Multi-Criteria Decision Analysis in Environmental and Civil Engineering. PPES, pp. 37–41. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64765-0_6

    Chapter  Google Scholar 

  6. Garg, R., Kumar, R., Garg, S.: MADM-based parametric selection and ranking of E-learning websites using fuzzy COPRAS. IEEE Trans. Educ. 1(1), 1–8 (2018)

    MathSciNet  Google Scholar 

  7. Sirisala, S., Ramakrishna, S.: Survey: enhanced trust management for improving QoS in MANETs. In: Bapi, R.S., Rao, K.S., Prasad, M.V.N.K. (eds.) First International Conference on Artificial Intelligence and Cognitive Computing. AISC, vol. 815, pp. 255–263. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1580-0_25

    Chapter  Google Scholar 

  8. Sengathir, J., Manoharan, R.: Exponential reliability factor based mitigation mechanism for selfish nodes in MANETs. J. Eng. Res. 4(1), 1–22 (2016)

    Article  Google Scholar 

  9. Sirisala, S., Rama Krishna, S.: Fuzzy COPRAS-based Node Cooperation Enforcing Trust Estimation Scheme for enhancing Quality of Service (QoS) during reliable data dissemination in MANETs. Int. J. Commun. Syst. 34(7), e4767 (2021). https://doi.org/10.1002/dac.4767

    Article  Google Scholar 

  10. Sirisala, S., Rama Krishna, S.: Gaussian trust factor-based grey decision making technique (GTF-GDMT) for node cooperation enforcement in MANETs. Int. J. Intell. Eng. Syst. (IJIES) 14, 154–165 (2021). ISSN: 2185-3118

    Google Scholar 

  11. Hernandez-Orallo, E., Olmos, M.D.S., Cano, J.C., Calafate, C.T., Manzoni, P.: CoCoWa: a collaborative contact-based watchdog for detecting selfish nodes. IEEE Trans. Mob. Comput. 14(6), 1162–1175 (2014)

    Article  Google Scholar 

  12. Poongothai, T., Duraiswamy, K.: Intrusion detection in mobile AdHoc networks using machine learning approach. In: International Conference on Information Communication and Embedded Systems (ICICES 2014), Chennai, India, pp. 1–5 (2014). https://doi.org/10.1109/ICICES.2014.7033949

  13. Jinarajadasa, G., Rupasinghe, L., Murray, I.: A reinforcement learning approach to enhance the trust level of MANETs. In: 2018 National Information Technology Conference (NITC), Colombo, Sri Lanka, pp. 1–7 (2018). https://doi.org/10.1109/NITC.2018.8550072

  14. Michael, H., Jedidiah, A.: Mobile Adhoc networks - an overview of risk identification, intrusion detection and machine learning techniques used. In: 2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC), Tumkur, Karnataka, India, pp. 1–5 (2022). https://doi.org/10.1109/ICMNWC56175.2022.10031757

  15. Vijaya Kumar, A., Jeyapal, A.: Self-adaptive trust based ABR protocol for MANETs using Q-learning. Sci. World J. 2014, 9, Article ID 452362 (2014). https://doi.org/10.1155/2014/452362

  16. Josang, A., Quattrociocchi, W.: Advanced features in Bayesian reputation systems. In: Fischer-Hübner, S., Lambrinoudakis, C., Pernul, G. (eds.) TrustBus. LNCS, vol. 5695, pp. 105–114. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03748-1_11

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasulu Sirisala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sirisala, S., Rajeswarappa, G., Lakumarapu, S. (2023). Node Cooperation Enforcement Scheme for Enhancing Quality of Service in MANETs Using Machine Learning Approach. In: Morusupalli, R., Dandibhotla, T.S., Atluri, V.V., Windridge, D., Lingras, P., Komati, V.R. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2023. Lecture Notes in Computer Science(), vol 14078. Springer, Cham. https://doi.org/10.1007/978-3-031-36402-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36402-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36401-3

  • Online ISBN: 978-3-031-36402-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics