Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sign Language Interpretation Using Deep Learning

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2023)

Abstract

Sign language is used to communicate a particular message over some universally known and accepted gestures. The speech and hearing challenged people use a specific combination of hand gestures and movements to convey a message. Despite the extensive research progress in Sign Language Detection, cost effective and performance effective solutions are still need of the day. Deep learning, and computer vision can be used to provide an effective solution to the user. This can be very helpful for the hearing and speech impaired people in seamless communication with others around as knowing sign language is not something that is common to all. In this work, a sign detector is developed, which detects various signs of the Sign Language used by speech impaired people. Here, data taken as input in the form of images is extensively used for both training and testing using machine learning. A custom Convolutional Neural Network (CNN) model to identify the sign from an image frame using Open-CV is developed and sentence construction of the detected signs is accomplished. A lot of images have been used as input for the purposes of training and testing. Many of the symbols in sign language could be rightly identified. A series of gestures are translated as text to the recipient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bantupalli, K., Xie, Y.: American sign language recognition using deep learning and computer vision. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 4896–4899. IEEE (2018). https://doi.org/10.1109/BigData.2018.8622141

  2. Cabrera, M.E., Bogado, J.M., Fermin, L., Acuna, R., Ralev, D.: Glove-based gesture recognition system. In: Adaptive Mobile Robotics, pp. 747–753 (2012). https://doi.org/10.1142/9789814415958_0095

  3. He, S.: Research of a sign language translation system based on deep learning. In: 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), pp. 392–396. IEEE (2019). https://doi.org/10.1109/AIAM48774.2019.00083. International Conference on Trendz in Information Sciences and Computing (TISC 2012)

  4. Herath, H.C.M., Kumari, W.A.L.V., Senevirathne, W.A.P.B., Dissanayake, M.B.: Image based sign language recognition system for Sinhala sign language. Sign 3(5), 2 (2013)

    Google Scholar 

  5. Geetha, M., Manjusha, U.C.: A vision based recognition of Indian sign language alphabets and numerals using b-spline approximation. Int. J. Comput. Sci. Eng. 4(3), 406–415 (2012)

    Google Scholar 

  6. Pigou, L., Dieleman, S., Kindermans, P.-J., Schrauwen, B.: Sign language recognition using convolutional neural networks. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 572–578. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16178-5_40

    Chapter  Google Scholar 

  7. Escalera, S., et al.: ChaLearn looking at people challenge 2014: dataset and results. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 459–473. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16178-5_32

    Chapter  Google Scholar 

  8. Huang, J., Zhou, W., Li, H.: Sign language recognition using 3D convolutional neural networks. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE, Turin (2015)

    Google Scholar 

  9. Jaoa Carriera, A.Z.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4724–4733. IEEE, Honolulu (2018)

    Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 248–255. IEEE. Miami, FL, USA (2009)

    Google Scholar 

  11. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  12. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2556–2563. IEEE (2011)

    Google Scholar 

  13. Zhao, M., Bu, J., Chen, C.: Robust background subtraction in HSV color space. In: Proceedings of SPIE MSAV, vol. 1, p. 4861 (2002). https://doi.org/10.1117/12.456333

  14. Chowdhury, A., Cho, S.J., Chong, U.P.: A background subtraction method using color information in the frame averaging process. In: Proceedings of 2011 6th International Forum on Strategic Technology, vol. 2, pp. 1275–1279. IEEE (2011). https://doi.org/10.1109/ifost.2011.6021252

  15. Mehreen, H., Mohammad, E.: Sign language recognition system using convolutional neural network and computer vision. Int. J. Eng. Res. Technol. 09(12) (2020). deeplearningbooks.org: Convolutional Networks

    Google Scholar 

  16. https://learnopencv.com/. Accessed 03 Apr 2023

  17. https://data-flair.training/blogs/sign-language-recognition-python-ml-opencv/. Accessed 03 Apr 2023

  18. https://core.ac.uk/download/pdf/191337614.pdf. Accessed 03 Apr 2023

  19. https://core.ac.uk/reader/191309220. Accessed 03 Apr 2023

  20. https://www.acadpubl.eu/jsi/2017-117-20-22/articles/20/2.pdf. Accessed 03 Apr 2023

  21. https://github.com/rrupeshh/Simple-Sign-Language-Detector. Accessed 03 Apr 2023

  22. Shirbhate, R.S., Shinde, V.D., Metkari, S.A., Borkar, P.U., Khandge, M.A.: Sign language recognition using machine learning algorithm. Int. Res. J. Eng. Technol. 7(03), 2122–2125 (2020)

    Google Scholar 

  23. https://www.freecodecamp.org/news/weekend-projects-sign-language-and-static-gesture-recognition-using-scikit-learn-60813d600e79/. Accessed 03 Apr 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suguna Mallika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suguna Mallika, S., Sanjana, A., Vani Gayatri, A., Veena Naga Sai, S. (2023). Sign Language Interpretation Using Deep Learning. In: Morusupalli, R., Dandibhotla, T.S., Atluri, V.V., Windridge, D., Lingras, P., Komati, V.R. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2023. Lecture Notes in Computer Science(), vol 14078. Springer, Cham. https://doi.org/10.1007/978-3-031-36402-0_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36402-0_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36401-3

  • Online ISBN: 978-3-031-36402-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics