Abstract
Multi-omics data from genomics representing molecular, metabolomic, transcriptomic, proteomic, or interatomic cell measurements constitute fertile ground for a combination of computational machine learning with biomedical applications to analyze, diagnose and treat common and chronic ailments using cutting-edge technologies. We introduce and define the concepts and show potential application to some of the most commonly occurring human ailments; we also discuss options for structures and data integration strategies that are applied today in Machine Learning and Deep Neural Network Learning to diagnose and treat diseases and discuss sample scholarly work that shows the efficacy of this approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, M., Allin, K. H., Petralia, F., Colombel, J. F., & Jess, T. (2022). Multi-omics to elucidate inflammatory bowel disease risk factors and pathways. Nature Reviews Gastroenterology & Hepatology, 19(6), 399–409.
Alkhateeb, A., Tabl, A. A., & Rueda, L. (2021). Deep learning in multi-omics data integration in cancer diagnostic. In Deep learning for biomedical data analysis: Techniques, approaches, and applications (pp. 255–271). CRC Press, Taylor & Francis Group.
Branson, A., Hauer, T., McClatchey, R., Rogulin, D., & Shamdasani, J. (2008). A data model for integrating heterogeneous medical data in the health-e-child project. Studies in Health Technology and Informatics, 138, 13.
Chaudhary, K., Poirion, O. B., Lu, L., & Garmire, L. X. (2018). Deep learning–based multi-omics integration robustly predicts survival in liver cancer using deep learning to predict liver cancer prognosis. Clinical Cancer Research, 24(6), 1248–1259.
Dhillon, A., Singh, A., & Bhalla, V. K. (2023). A systematic review on biomarker identification for cancer diagnosis and prognosis in multi-omics: From computational needs to machine learning and deep learning. Archives of Computational Methods in Engineering, 30(2), 917–949.
Eddy, S., Mariani, L. H., & Kretzler, M. (2020). Integrated multi-omics approaches to improve classification of chronic kidney disease. Nature Reviews Nephrology, 16(11), 657–668.
El-Manzalawy, Y., Hsieh, T. Y., Shivakumar, M., Kim, D., & Honavar, V. (2018). Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data. BMC Medical Genomics, 11(3), 19–31.
Gaynanova, I., & Li, G. (2019). Structural learning and integrative decomposition of multi-view data. Biometrics, 75(4), 1121–1132.
Kang, M., Ko, E., & Mersha, T. B. (2022). A roadmap for multi-omics data integration using deep learning. Briefings in Bioinformatics, 23(1), bbab454.
Khadirnaikar, S., Shukla, S., & Prasanna, S. R. M. (2023). Machine learning based combination of multi-omics data for subgroup identification in non-small cell lung cancer. Scientific Reports, 13(1), 4636.
Khoshghalbvash, F., & Gao, J. X. (2019). Integrative feature ranking by applying deep learning on multi source genomic data. In Proceedings of the 10th ACM international conference on bioinformatics, computational biology and health informatics (pp. 207–216). ACM.
Li, Y., Wu, F.-X., & Ngom, A. (2016). A review on machine learning principles for multi-view biological data integration. Briefings in Bioinformatics, 19(2), 325–340.
Monteleone, A. M., Troisi, J., Fasano, A., Dalle Grave, R., Marciello, F., Serena, G., et al. (2021). Multi-omics data integration in anorexia nervosa patients before and after weight regain: A microbiome-metabolomics investigation. Clinical Nutrition, 40(3), 1137–1146.
Nativio, R., Lan, Y., Donahue, G., Sidoli, S., Berson, A., Srinivasan, A. R., et al. (2020). An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer’s disease. Nature Genetics, 52(10), 1024–1035.
Olivier, M., Asmis, R., Hawkins, G. A., Howard, T. D., & Cox, L. A. (2019). The need for multi-omics biomarker signatures in precision medicine. International Journal of Molecular Sciences, 20(19), 4781.
Picard, M., Scott-Boyer, M. P., Bodein, A., Périn, O., & Droit, A. (2021). Integration strategies of multi-omics data for machine learning analysis. Computational and Structural Biotechnology Journal, 19, 3735–3746.
Sathyanarayanan, A., Mueller, T. T., Moni, M. A., Schueler, K., Baune, B. T., Lio, P., et al. (2023). Multi-omics data integration methods and their applications in psychiatric disorders. European Neuropsychopharmacology, 69, 26–46.
Spicker, J. S., Brunak, S., Frederiksen, K. S., & Toft, H. (2008). Integration of clinical chemistry, expression, and metabolite data leads to better toxicological class separation. Toxicological Sciences, 102(2), 444–454.
Sun, D., Wang, M., & Li, A. (2018). A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(3), 841–850.
Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., & Huang, K. (2020). Moronet: Multi-omics integration via graph convolutional networks for biomedical data classification. bioRxiv, 2020-07.
Wang, R. S., Maron, B. A., & Loscalzo, J. (2023). Multi-omics network medicine approaches to precision medicine and therapeutics in cardiovascular diseases. Arteriosclerosis, Thrombosis, and Vascular Biology., 43, 493–503.
Xiao, Y., Bi, M., Guo, H., & Li, M. (2022). Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis. eBioMedicine, 79, 104001.
Xie, G., Dong, C., Kong, Y., Zhong, J. F., Li, M., & Wang, K. (2019). Group lasso regularized deep learning for cancer prognosis from multi-omics and clinical features. Genes, 10(3), 240.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
El-Hassan, A. (2024). Machine Learning from Multi-omics: Applications and Data Integration. In: Alkhateeb, A., Rueda, L. (eds) Machine Learning Methods for Multi-Omics Data Integration. Springer, Cham. https://doi.org/10.1007/978-3-031-36502-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-36502-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36501-0
Online ISBN: 978-3-031-36502-7
eBook Packages: Computer ScienceComputer Science (R0)