Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Machine Learning from Multi-omics: Applications and Data Integration

  • Chapter
  • First Online:
Machine Learning Methods for Multi-Omics Data Integration
  • 634 Accesses

Abstract

Multi-omics data from genomics representing molecular, metabolomic, transcriptomic, proteomic, or interatomic cell measurements constitute fertile ground for a combination of computational machine learning with biomedical applications to analyze, diagnose and treat common and chronic ailments using cutting-edge technologies. We introduce and define the concepts and show potential application to some of the most commonly occurring human ailments; we also discuss options for structures and data integration strategies that are applied today in Machine Learning and Deep Neural Network Learning to diagnose and treat diseases and discuss sample scholarly work that shows the efficacy of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal, M., Allin, K. H., Petralia, F., Colombel, J. F., & Jess, T. (2022). Multi-omics to elucidate inflammatory bowel disease risk factors and pathways. Nature Reviews Gastroenterology & Hepatology, 19(6), 399–409.

    Article  Google Scholar 

  • Alkhateeb, A., Tabl, A. A., & Rueda, L. (2021). Deep learning in multi-omics data integration in cancer diagnostic. In Deep learning for biomedical data analysis: Techniques, approaches, and applications (pp. 255–271). CRC Press, Taylor & Francis Group.

    Chapter  Google Scholar 

  • Branson, A., Hauer, T., McClatchey, R., Rogulin, D., & Shamdasani, J. (2008). A data model for integrating heterogeneous medical data in the health-e-child project. Studies in Health Technology and Informatics, 138, 13.

    PubMed  Google Scholar 

  • Chaudhary, K., Poirion, O. B., Lu, L., & Garmire, L. X. (2018). Deep learning–based multi-omics integration robustly predicts survival in liver cancer using deep learning to predict liver cancer prognosis. Clinical Cancer Research, 24(6), 1248–1259.

    Article  CAS  PubMed  Google Scholar 

  • Dhillon, A., Singh, A., & Bhalla, V. K. (2023). A systematic review on biomarker identification for cancer diagnosis and prognosis in multi-omics: From computational needs to machine learning and deep learning. Archives of Computational Methods in Engineering, 30(2), 917–949.

    Article  Google Scholar 

  • Eddy, S., Mariani, L. H., & Kretzler, M. (2020). Integrated multi-omics approaches to improve classification of chronic kidney disease. Nature Reviews Nephrology, 16(11), 657–668.

    Article  PubMed  Google Scholar 

  • El-Manzalawy, Y., Hsieh, T. Y., Shivakumar, M., Kim, D., & Honavar, V. (2018). Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data. BMC Medical Genomics, 11(3), 19–31.

    Google Scholar 

  • Gaynanova, I., & Li, G. (2019). Structural learning and integrative decomposition of multi-view data. Biometrics, 75(4), 1121–1132.

    Article  PubMed  Google Scholar 

  • Kang, M., Ko, E., & Mersha, T. B. (2022). A roadmap for multi-omics data integration using deep learning. Briefings in Bioinformatics, 23(1), bbab454.

    Article  PubMed  Google Scholar 

  • Khadirnaikar, S., Shukla, S., & Prasanna, S. R. M. (2023). Machine learning based combination of multi-omics data for subgroup identification in non-small cell lung cancer. Scientific Reports, 13(1), 4636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoshghalbvash, F., & Gao, J. X. (2019). Integrative feature ranking by applying deep learning on multi source genomic data. In Proceedings of the 10th ACM international conference on bioinformatics, computational biology and health informatics (pp. 207–216). ACM.

    Chapter  Google Scholar 

  • Li, Y., Wu, F.-X., & Ngom, A. (2016). A review on machine learning principles for multi-view biological data integration. Briefings in Bioinformatics, 19(2), 325–340.

    Google Scholar 

  • Monteleone, A. M., Troisi, J., Fasano, A., Dalle Grave, R., Marciello, F., Serena, G., et al. (2021). Multi-omics data integration in anorexia nervosa patients before and after weight regain: A microbiome-metabolomics investigation. Clinical Nutrition, 40(3), 1137–1146.

    Article  CAS  PubMed  Google Scholar 

  • Nativio, R., Lan, Y., Donahue, G., Sidoli, S., Berson, A., Srinivasan, A. R., et al. (2020). An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer’s disease. Nature Genetics, 52(10), 1024–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivier, M., Asmis, R., Hawkins, G. A., Howard, T. D., & Cox, L. A. (2019). The need for multi-omics biomarker signatures in precision medicine. International Journal of Molecular Sciences, 20(19), 4781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picard, M., Scott-Boyer, M. P., Bodein, A., Périn, O., & Droit, A. (2021). Integration strategies of multi-omics data for machine learning analysis. Computational and Structural Biotechnology Journal, 19, 3735–3746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathyanarayanan, A., Mueller, T. T., Moni, M. A., Schueler, K., Baune, B. T., Lio, P., et al. (2023). Multi-omics data integration methods and their applications in psychiatric disorders. European Neuropsychopharmacology, 69, 26–46.

    Article  CAS  PubMed  Google Scholar 

  • Spicker, J. S., Brunak, S., Frederiksen, K. S., & Toft, H. (2008). Integration of clinical chemistry, expression, and metabolite data leads to better toxicological class separation. Toxicological Sciences, 102(2), 444–454.

    Article  CAS  PubMed  Google Scholar 

  • Sun, D., Wang, M., & Li, A. (2018). A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(3), 841–850.

    Article  Google Scholar 

  • Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., & Huang, K. (2020). Moronet: Multi-omics integration via graph convolutional networks for biomedical data classification. bioRxiv, 2020-07.

    Google Scholar 

  • Wang, R. S., Maron, B. A., & Loscalzo, J. (2023). Multi-omics network medicine approaches to precision medicine and therapeutics in cardiovascular diseases. Arteriosclerosis, Thrombosis, and Vascular Biology., 43, 493–503.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, Y., Bi, M., Guo, H., & Li, M. (2022). Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis. eBioMedicine, 79, 104001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, G., Dong, C., Kong, Y., Zhong, J. F., Li, M., & Wang, K. (2019). Group lasso regularized deep learning for cancer prognosis from multi-omics and clinical features. Genes, 10(3), 240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar El-Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Hassan, A. (2024). Machine Learning from Multi-omics: Applications and Data Integration. In: Alkhateeb, A., Rueda, L. (eds) Machine Learning Methods for Multi-Omics Data Integration. Springer, Cham. https://doi.org/10.1007/978-3-031-36502-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36502-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36501-0

  • Online ISBN: 978-3-031-36502-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics