Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Smart-Tree: Neural Medial Axis Approximation of Point Clouds for 3D Tree Skeletonization

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2023)

Abstract

This paper introduces Smart-Tree, a supervised method for approximating the medial axes of branch skeletons from a tree point cloud. Smart-Tree uses a sparse voxel convolutional neural network to extract the radius and direction towards the medial axis of each input point. A greedy algorithm performs robust skeletonization using the estimated medial axis. Our proposed method provides robustness to complex tree structures and improves fidelity when dealing with self-occlusions, complex geometry, touching branches, and varying point densities. We evaluate Smart-Tree using a multi-species synthetic tree dataset and perform qualitative analysis on a real-world tree point cloud. Our experimentation with synthetic and real-world datasets demonstrates the robustness of our approach over the current state-of-the-art method. The dataset (https://github.com/uc-vision/synthetic-trees) and source code (https://github.com/uc-vision/smart-tree) are publicly available.

Supported by University of Canterbury, New Zealand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arikapudi, R., Vougioukas, S.G.: Robotic tree-fruit harvesting with telescoping arms: a study of linear fruit reachability under geometric constraints. IEEE Access 9, 17114–17126 (2021)

    Article  Google Scholar 

  2. Botterill, T., et al.: A robot system for pruning grape vines. J. Field Robot. 34(6), 1100–1122 (2017)

    Article  Google Scholar 

  3. Calders, K., et al.: Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sens. Environ. 251, 112102 (2020)

    Google Scholar 

  4. Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., Su, Z.: Point cloud skeletons via laplacian based contraction. In: 2010 Shape Modeling International Conference, pp. 187–197. IEEE (2010)

    Google Scholar 

  5. Cárdenas-Donoso, J.L., Ogayar, C.J., Feito, F.R., Jurado, J.M.: Modeling of the 3D tree skeleton using real-world data: a survey. IEEE Trans. Vis. Comput. Graph. (2022)

    Google Scholar 

  6. Chaudhury, A., Godin, C.: Skeletonization of plant point cloud data using stochastic optimization framework. Front. Plant Sci. 11, 773 (2020)

    Article  Google Scholar 

  7. Chaudhury, A., et al.: Machine vision system for 3D plant phenotyping. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(6), 2009–2022 (2018)

    Article  Google Scholar 

  8. Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal convnets: Minkowski convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3075–3084 (2019)

    Google Scholar 

  9. Contributors, S.: Spconv: Spatially sparse convolution library (2022). https://github.com/traveller59/spconv

  10. Dassot, M., Fournier, M., Deleuze, C.: Assessing the scaling of the tree branch diameters frequency distribution with terrestrial laser scanning: methodological framework and issues. Ann. For. Sci. 76, 1–10 (2019)

    Article  Google Scholar 

  11. Delagrange, S., Jauvin, C., Rochon, P.: PypeTree: a tool for reconstructing tree perennial tissues from point clouds. Sensors 14(3), 4271–4289 (2014)

    Article  Google Scholar 

  12. Du, S., Lindenbergh, R., Ledoux, H., Stoter, J., Nan, L.: AdTree: accurate, detailed, and automatic modelling of laser-scanned trees. Remote Sens. 11(18), 2074 (2019)

    Article  Google Scholar 

  13. Fan, G., et al.: A new quantitative approach to tree attributes estimation based on lidar point clouds. Remote Sens. 12(11), 1779 (2020)

    Article  Google Scholar 

  14. Fan, G., Nan, L., Dong, Y., Su, X., Chen, F.: AdQSM: a new method for estimating above-ground biomass from TLS point clouds. Remote Sens. 12(18), 3089 (2020)

    Article  Google Scholar 

  15. Gorte, B.: Skeletonization of laser-scanned trees in the 3D raster domain. In: Abdul-Rahman, A., Zlatanova, S., Coors, V. (eds.) Innovations in 3D Geo Information Systems. Lecture Notes in Geoinformation and Cartography, pp. 371–380. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-36998-1_29

    Chapter  Google Scholar 

  16. Gorte, B., Pfeifer, N.: Structuring laser-scanned trees using 3D mathematical morphology. Int. Arch. Photogram. Remote Sens. 35(B5), 929–933 (2004)

    Google Scholar 

  17. Graham, B., Van der Maaten, L.: Submanifold sparse convolutional networks. arXiv preprint arXiv:1706.01307 (2017)

  18. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3D point clouds: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(12), 4338–4364 (2020)

    Article  Google Scholar 

  19. Hackenberg, J., Spiecker, H., Calders, K., Disney, M., Raumonen, P.: Simpletree-an efficient open source tool to build tree models from TLS clouds. Forests 6(11), 4245–4294 (2015)

    Article  Google Scholar 

  20. Huang, H., et al.: L1-medial skeleton of point cloud. ACM Trans. Graph. 32(4), 65–1 (2013)

    Google Scholar 

  21. Interactive Data Visualization, I.: The standard for vegetation modeling and middleware. https://store.speedtree.com/

  22. Kankare, V., Holopainen, M., Vastaranta, M., Puttonen, E., Yu, X., Hyyppä, J., Vaaja, M., Hyyppä, H., Alho, P.: Individual tree biomass estimation using terrestrial laser scanning. ISPRS J. Photogramm. Remote. Sens. 75, 64–75 (2013)

    Article  Google Scholar 

  23. Liu, Y., Guo, J., Benes, B., Deussen, O., Zhang, X., Huang, H.: TreePartNet: neural decomposition of point clouds for 3D tree reconstruction. ACM Trans. Graph. 40(6) (2021)

    Google Scholar 

  24. Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., El-Sana, J.: Automatic reconstruction of tree skeletal structures from point clouds. In: ACM SIGGRAPH Asia 2010 papers, pp. 1–8. ACM (2010)

    Google Scholar 

  25. Molina-Valero, J.A., et al.: Operationalizing the use of TLS in forest inventories: the R package FORTLS. Environ. Modell. Softw. 150, 105337 (2022)

    Google Scholar 

  26. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  27. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  28. Raumonen, P., et al.: Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens. 5(2), 491–520 (2013)

    Article  Google Scholar 

  29. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  30. Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization algorithms and their applications. Pattern Recogn. Lett. 76, 3–12 (2016)

    Article  Google Scholar 

  31. Spalding, E.P., Miller, N.D.: Image analysis is driving a renaissance in growth measurement. Curr. Opin. Plant Biol. 16(1), 100–104 (2013)

    Article  Google Scholar 

  32. Tang, H., Liu, Z., Li, X., Lin, Y., Han, S.: TorchSparse: efficient point cloud inference engine. Proc. Mach. Learn. Syst. 4, 302–315 (2022)

    Google Scholar 

  33. Tompalski, P., et al.: Estimating changes in forest attributes and enhancing growth projections: a review of existing approaches and future directions using airborne 3D point cloud data. Curr. For. Rep. 7, 1–24 (2021)

    Google Scholar 

  34. Verroust, A., Lazarus, F.: Extracting skeletal curves from 3D scattered data. In: Proceedings Shape Modeling International 1999. International Conference on Shape Modeling and Applications, pp. 194–201. IEEE (1999)

    Google Scholar 

  35. White, J.C., Wulder, M.A., Vastaranta, M., Coops, N.C., Pitt, D., Woods, M.: The utility of image-based point clouds for forest inventory: a comparison with airborne laser scanning. Forests 4(3), 518–536 (2013)

    Article  Google Scholar 

  36. Xu, H., Wang, C.C., Shen, X., Zlatanova, S.: 3D tree reconstruction in support of urban microclimate simulation: a comprehensive literature review. Buildings 11(9), 417 (2021)

    Article  Google Scholar 

  37. Xu, H., Gossett, N., Chen, B.: Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans. Graph. (TOG) 26(4), 19-es (2007)

    Google Scholar 

  38. Zahid, A., Mahmud, M.S., He, L., Heinemann, P., Choi, D., Schupp, J.: Technological advancements towards developing a robotic pruner for apple trees: a review. Comput. Electron. Agric. 189, 106383 (2021)

    Google Scholar 

Download references

Acknowledgment

This work was funded by the New Zealand Ministry of Business, Innovation and Employment under contract C09X1923 (Catalyst: Strategic Fund).

This research/project is supported by the National Research Foundation, Singapore under its Industry Alignment Fund - Pre-positioning (IAF-PP) Funding Initiative. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the National Research Foundation, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Dobbs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dobbs, H., Batchelor, O., Green, R., Atlas, J. (2023). Smart-Tree: Neural Medial Axis Approximation of Point Clouds for 3D Tree Skeletonization. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham. https://doi.org/10.1007/978-3-031-36616-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36616-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36615-4

  • Online ISBN: 978-3-031-36616-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics