Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust Seeded Image Segmentation Using Adaptive Label Propagation and Deep Learning-Based Contour Orientation

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 (ICCSA 2023)

Abstract

Deep Learning has become a popular tool for addressing complex tasks in many computer vision applications. Label diffusion methods have also been a very effective technique for getting accurate segmentations of real-world images, as they combine user autonomy, versatility and accurateness through a user-friendly interface. In this paper, we propose a seeded segmentation framework for partitioning real-world images by combining deep contour learning and graph-based label propagation models. More precisely, our approach takes a CNN-type contour detection network to learn graph edge weights, which are used as input to solve a coupled energy minimization problem that diffuses the user-selected annotations to the desired targets. To accurately extract deep features from image contours while generating diffusion maps, we train a deep learning architecture that integrates a hierarchical neural network, a graph-based label propagation model and a loss function, allowing the coupled training mechanism to refine the results until convergence. We attest to the effectiveness and accuracy of the proposed approach by conducting both quantitative and qualitative assessments with existing seeded image segmentation methods.

This research has been funded by the São Paulo Research Foundation (FAPESP – grants 2013/07375-0, #2021/03328-3 and #2021/01305-6), the Coordination for the Improvement of Higher Education Personnel (CAPES - Funding Code 001), and the National Council for Scientific and Technological Development (CNPq – grants #316228/2021-4 and #305220/2022-5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aletti, G., Benfenati, A., Naldi, G.: A semiautomatic multi-label color image segmentation coupling dirichlet problem and colour distances. J. Imaging. 7(10) (2021)

    Google Scholar 

  2. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  3. Bampis, C.G., Maragos, P., Bovik, A.C.: Graph-driven diffusion and random walk schemes for image segmentation. IEEE Trans. Image Process. 26(1), 35–50 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benvenuto, G.A., Colnago, M., Dias, M.A., Negri, R.G., Silva, E.A., Casaca, W.: A fully unsupervised deep learning framework for non-rigid fundus image registration. Bioengineering 9(8), 369 (2022)

    Article  Google Scholar 

  5. Can, Y.B., Chaitanya, K., Mustafa, B., Koch, L.M., Konukoglu, E., Baumgartner, C.F.: Learning to segment medical images with scribble-supervision alone. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 236–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_27

    Chapter  Google Scholar 

  6. Casaca, W., Gois, J.P., Batagelo, H.C., Taubin, G., Nonato, L.G.: Laplacian coordinates: theory and methods for seeded image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 43(8), 2665–2681 (2021)

    Article  Google Scholar 

  7. Casaca, W., Nonato, L.G., Taubin, G.: Laplacian coordinates for seeded image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 384–391 (2014)

    Google Scholar 

  8. Cerrone, L., Zeilmann, A., Hamprecht, F.A.: End-to-end learned random walker for seeded image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12559–12568 (2019)

    Google Scholar 

  9. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1362–1374 (2009)

    Article  Google Scholar 

  10. Estrada, F.J., Jepson, A.D.: Benchmarking image segmentation algorithms. Int. J. Comput. Vision 85(2), 167–181 (2009)

    Article  Google Scholar 

  11. Fischer, M., Hepp, T., Gatidis, S., Yang, B.: Self-supervised contrastive learning with random walks for medical image segmentation with limited annotations. Computerized Medical Imaging and Graphics, p. 102174 (2023)

    Google Scholar 

  12. Freixenet, J., Muñoz, X., Raba, D., Martí, J., Cufí, X.: Yet another survey on image segmentation: region and boundary information integration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 408–422. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47977-5_27

    Chapter  Google Scholar 

  13. Gao, G., Xu, G., Yu, Y., Xie, J., Yang, J., Yue, D.: MSCFNet: a lightweight network with multi-scale context fusion for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. 23(12), 25489–25499 (2021)

    Article  Google Scholar 

  14. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  15. Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for interactive image segmentation. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3129–3136 (2010)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  17. Hu, J., Chen, Z., Zhang, R., Yang, M., Zhang, S.: Robust random walk for leaf segmentation. IET Image Proc. 14(6), 1180–1186 (2020)

    Article  Google Scholar 

  18. Hu, Y., Soltoggio, A., Lock, R., Carter, S.: A fully convolutional two-stream fusion network for interactive image segmentation. Neural Netw. 109, 31–42 (2019)

    Article  Google Scholar 

  19. Kim, K.I., Tompkin, J., Pfister, H., Theobalt, C.: Context-guided diffusion for label propagation on graphs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2776–2784 (2015)

    Google Scholar 

  20. Kucharski, A., Fabijańska, A.: CNN-watershed: a watershed transform with predicted markers for corneal endothelium image segmentation. Biomed. Signal Process. Control 68, 102805 (2021)

    Article  Google Scholar 

  21. Maninis, K.K., Pont-Tuset, J., Arbeláez, P., Gool, L.V.: Convolutional oriented boundaries: from image segmentation to high-level tasks. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 819–833 (2018)

    Article  Google Scholar 

  22. Markovic, M., Malehmir, R., Malehmir, A.: Diffraction pattern recognition using deep semantic segmentation. Near Surface Geophys. 20(5), 507–518 (2022)

    Article  Google Scholar 

  23. Meilǎ, M.: Comparing clusterings: an axiomatic view. In: Proceedings of the 22nd International Conference on Machine Learning, p. 577–584 (2005)

    Google Scholar 

  24. Negri, R.G., da Silva, E.A., Casaca, W.: Inducing contextual classifications with kernel functions into support vector machines. IEEE Geosci. Remote Sens. Lett. 15(6), 962–966 (2018)

    Article  Google Scholar 

  25. Neupane, B., Horanont, T., Aryal, J.: Deep learning-based semantic segmentation of urban features in satellite images: a review and meta-analysis. Rem. Sens. 13(4), 808 (2021)

    Article  Google Scholar 

  26. Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.): Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2015. LNCS, vol. 8932. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14612-6

  27. Ramadan, H., Lachqar, C., Tairi, H.: A survey of recent interactive image segmentation methods. Comput. Visual Med. 6, 355–384 (2020)

    Article  Google Scholar 

  28. Roth, H.R., Yang, D., Xu, Z., Wang, X., Xu, D.: Going to extremes: weakly supervised medical image segmentation. Mach. Learn. Knowl. Extract. 3(2), 507–524 (2021)

    Article  Google Scholar 

  29. Rother, C., Kolmogorov, V., Boykov, Y., Blake, A.: Interactive foreground extraction using graph cut. In: Advances in Markov Random Fields for Vision and Image Processing (2011)

    Google Scholar 

  30. Tang, M., Gorelick, L., Veksler, O., Boykov, Y.: Grabcut in one cut. In: 2013 IEEE International Conference on Computer Vision, pp. 1769–1776 (2013)

    Google Scholar 

  31. Warrens, M.J., van der Hoef, H.: Understanding the rand index. In: Imaizumi, T., Okada, A., Miyamoto, S., Sakaori, F., Yamamoto, Y., Vichi, M. (eds.) Advanced Studies in Classification and Data Science, pp. 301–313 (2020)

    Google Scholar 

  32. Wolf, S., Schott, L., Kothe, U., Hamprecht, F.: Learned watershed: End-to-end learning of seeded segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2011–2019 (2017)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank the São Paulo Research Foundation (FAPESP – grants #2013/07375-0, #2021/03328-3 and #2021/01305-6), the Coordination for the Improvement of Higher Education Personnel (CAPES - Funding Code 001), and the National Council for Scientific and Technological Development (CNPq – grants #316228/2021-4 and #305220/2022-5) for providing resources that greatly contributed to the development of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wallace Casaca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bruzadin, A.J., Colnago, M., Negri, R.G., Casaca, W. (2023). Robust Seeded Image Segmentation Using Adaptive Label Propagation and Deep Learning-Based Contour Orientation. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023. ICCSA 2023. Lecture Notes in Computer Science, vol 13957. Springer, Cham. https://doi.org/10.1007/978-3-031-36808-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36808-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36807-3

  • Online ISBN: 978-3-031-36808-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics