Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Infrastructure for Studying the Role of Sentiment in Human-Robot Interaction

  • Conference paper
  • First Online:
Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges (ICPR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13646))

Included in the following conference series:

  • 188 Accesses

Abstract

The need for social robot systems has become even more critical as a result of the ongoing pandemic. Labour shortages in the services sector and public health concerns around infection transmission combine to favour the deployment of autonomous systems in a number of traditional roles including server robots in restaurants, companion robots in long-term care homes and security robots in public spaces, to identify but a few examples. To be successful, social robots must communicate with a wide range of individuals under a wide range of different scenarios. Understanding and reacting to the sentiment being expressed by an individual is key in human-human interaction, especially in critical situations that require de-escalation. This paper takes as a starting point that user sentiment is also critical for the successful deployment of social robot systems. Although much can be learned from experiments performed in simulation, real-world experiments in the development of sentiment-aware social robots requires an infrastructure upon which to explore questions related to the role of sentiment in social robotics. This includes the development of an appropriate robot morphology and user/robot interface. This paper reports early results in the development of sentiment and display technologies as part of the development of a sentiment-informed social robot named Sentrybot, an autonomous robot intended for deployment in the security domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    [4] p. 11.

References

  1. Braezeal, C., Scassellati, B.: How to build robots that makes friends and influence people. In: IEEE/RSJ IROS. Kyongju, Korea (1999)

    Google Scholar 

  2. Daily, S.B., et al.: Affective computing: historical foundations, current applications, and future trends. In: Jeon, M. (ed.) Emotions and Affect in Human Factors and Human-Computer Interaction, pp. 213–231. Academic Press, San Diego (2017)

    Chapter  Google Scholar 

  3. Henschel, A., Laban, G., Cross, E.S.: What makes a robot social? a review of social robots from science fiction to a home or hospital near you. Cogn. Robot. 2, 9–19 (2021)

    Google Scholar 

  4. Sarrica, M., Brondi, S., Fortunati, L.: How many facets does a “social robot’’ have? a review of scientific and popular definitions online. Inf. Techol. People 33, 1–21 (2020)

    Google Scholar 

  5. Inbar, O., Meyer, J.: Manners matter: trust in robotic peacekeepers. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 59, pp. 185–189 (2016)

    Google Scholar 

  6. Lyons, J.B., Vo, T., Wynne, K.T., Majoney, S., Nam, C.S., Gallimore, D.: Trusting autonomous security robots: the role of reliability and stated social intent. J. Hum. Factors Ergon. Soc. 63(4), 603–618 (2020)

    Article  Google Scholar 

  7. Mavandadi, V., Bieling, P.J., Madsen, V.: Effective ingredients of verbal de-escalation: validating an English modified version of the ‘de-escalating aggressive behaviour scale. J. Psychiatr. Ment. Health Nurs. 23(6–7), 357–368 (2016)

    Article  Google Scholar 

  8. Hallett, N., Dickens, G.L.: De-escalation of aggressive behaviour in healthcare settings: concept analysis. Int. J. Nurs. Stud. 75, 10–20 (2017)

    Article  Google Scholar 

  9. Mavandadi, V., Bieling, P.J., Madsen, V.: Effective ingredients of verbal de-escalation: validating an English modified version of the ’de-escalating aggressive behaviour scale. J. Psychiatr. Ment. Health Nurs. 23(6–7), 357–68 (2016)

    Article  Google Scholar 

  10. Rabenschlag, F., Cassidy, C., Steinauer, R.: Nursing perspectives: reflecting history and informal coercion in de-escalation strategies. Front. Psychiatry 10, 231 (2019)

    Article  Google Scholar 

  11. Goodman, H., Papastavrou Brooks, C., Price, O., Barley, E.A.: Barriers and facilitators to the effective de-escalation of conflict behaviours in forensic high-secure settings: a qualitative study. Int. J. Men. Health Syst. 14, 1–16 (2020)

    Google Scholar 

  12. Toichoa Eyam, A., Mohammed, W.M., Martinez Lastra, J.L.: Emotion-driven analysis and control of human-robot interactions in collaborative applications. Sensors 21, 4626 (2021)

    Article  Google Scholar 

  13. Clearpath Robotics, R.: Dingo indoor mobile robot. https://clearpathrobotics.com/dingo-indoor-mobile-robot/

  14. Das, S.: Robot localization in a mapped environment using adaptive monte carlo algorithm. Int. J. Sci. Eng. Res. 9, 10 (2018)

    Google Scholar 

  15. Yang, X.: Slam and navigation of indoor robot based on ROS and LIDAR. J. Phys. 1748, 1 (2021)

    Google Scholar 

  16. Altarawneh, Enas, Jenkin, Michael, Scott MacKenzie, I..: An extensible cloud based avatar: implementation and evaluation. In: Brooks, Anthony Lewis, Brahman, Sheryl, Kapralos, Bill, Nakajima, Amy, Tyerman, Jane, Jain, Lakhmi C.. (eds.) Recent Advances in Technologies for Inclusive Well-Being. ISRL, vol. 196, pp. 503–522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-59608-8_27

    Chapter  Google Scholar 

  17. Huggins-Daines, D., Kumar, M., Chan, A., Black, A., Ravishankar, M., Rudnicky, A.: Pocketsphinx: a free, real-time continuous speech recognition system for hand-held devices. In: 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings, May 2006

    Google Scholar 

  18. Ravulavaru, A.: Google Cloud AI Services Quick Start Guide: Build Intelligent Applications with Google Cloud AI Services. Packt Publishing, Birmingham (2018)

    Google Scholar 

  19. Packowski, S., Lakhana, A.: Using IBM WATSON cloud services to build natural language processing solutions to leverage chat tools. In: Proceedings of the 27th Annual International Conference on Computer Science and Software Engineering (CASCON), Markham, Ontario, Canada, pp. 211–218 (2017)

    Google Scholar 

  20. Larsen, L.: Learning Microsoft Cognitive Services: Use Cognitive Services APIs to Add AI Capabilities to Your Applications, 3rd edn. Packt Publishing, Birmingham (2018)

    Google Scholar 

  21. Biswas, M., Wit.ai and Dialogflow. Apress, Berkeley, CA, pp. 67–100 (2018). https://doi.org/10.1007/978-1-4842-3754-0_3

  22. Aronsson, J., Lu, P., Strüber, D., Berger, T.: A maturity assessment framework for conversational AI development platforms. New York, NY, USA, Association for Computing Machinery, pp. 1736–1745 (2021). https://doi.org/10.1145/3412841.3442046

  23. Altarawneh, E., jenkin, M.: System and method for rendering of an animated avatar, U.S. Patent 10 580 187B2, 7 March 2020

    Google Scholar 

  24. Altarawneh, E., Jenkin, M.: Leveraging cloud-based tools to talk with robots. In: Proceedings of 16th International Conference On Informatics in Control, Automation and Robotics (ICINCO), July 2019

    Google Scholar 

  25. Valenza, E.: Blender Cycles: Materials and Textures Cookbook, Third Edition, 3rd ed. Packt Publishing, Birmingham (2015)

    Google Scholar 

  26. Paradis, D.J., Segee, B.: Remote rendering and rendering in virtual machines. In. International Conference on Computational Science and Computational Intelligence (CSCI), vol. 2016, pp. 218–221 (2016)

    Google Scholar 

  27. Doshi, U., Barot, V., Gavhane, S.: Emotion detection and sentiment analysis of static images. In: IEEE International Conference on Convergence to Digital World, Mumbai, India (2000)

    Google Scholar 

  28. Rajesh, K.M., Naveenkumar, M.: A robust method for face recognition and face emotion detection system using support vector machines. In: 2016 International Conference on Electrical, Electronics, Communication, Computer and Optimization Techniques (ICEECCOT), pp. 1–5 (2016)

    Google Scholar 

  29. Reney, D., Tripathi, N.: An efficient method to face and emotion detection In: Fifth International Conference on Communication Systems and Network Technologies, vol. 2015, pp. 493–497 (2015)

    Google Scholar 

  30. Li, W., Xu, H.: Text-based emotion classification using emotion cause extraction. Expert Syst. Appl. 41(4), 1742–1749 (2014)

    Article  Google Scholar 

  31. Agrawal, A., An, A.: Unsupervised emotion detection from text using semantic and syntactic relations. In: 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, vol. 1. pp. 346–353. IEEE (2012)

    Google Scholar 

  32. Abdi, A., Shamsuddin, S.M., Hasan, S., Piran, J.: Deep learning-based sentiment classification of evaluative text based on multi-feature fusion. Inf. Process. Manag. 56(4), 1245–1259 (2019)

    Article  Google Scholar 

  33. Demszky, D., Movshovitz-Attias, D., Ko, J., Cowen, A., Nemade, G., Ravi, S.: Goemotions: a dataset of fine-grained emotions, arXiv preprint arXiv:2005.00547 (2020)

  34. Fersini, E., Messina, E., Arosio, G., Archetti, F.: Audio-based emotion recognition in judicial domain: a multilayer support vector machines approach. In: Perner, P. (ed.) MLDM 2009. LNCS (LNAI), vol. 5632, pp. 594–602. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03070-3_45

    Chapter  Google Scholar 

  35. Lalitha, S., Geyasruti, D., Narayanan, R., Shravani, M.: Emotion detection using MFCC and cepstrum features. Procedia Comput. Sci. 70, 29–35 (2015)

    Article  Google Scholar 

  36. Sayedelahl, A., Fewzee, P., Kamel, M.S., Karray, F.: Audio-based emotion recognition from natural conversations based on co-occurrence matrix and frequency domain energy distribution features. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011. LNCS, vol. 6975, pp. 407–414. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24571-8_52

    Chapter  Google Scholar 

  37. Chernykh, V., Sterling, G., Prihodko, P.: Emotion recognition from speech with recurrent neural networks, CoRR, vol. abs/1701.08071 (2017)

    Google Scholar 

  38. Cai, L., Hu, Y., Dong, J., Zhou, S.: Audio-textual emotion recognition based on improved neural networks. Math. Prob. Eng. 2019, 1–9 (2019). https://www.hindawi.com/journals/mpe/2019/2593036/

  39. Ren, M., Nie, W., Liu, A., Su, Y.: Multi-modal correlated network for emotion recognition in speech. Vis. Inf. 3(3), 150–155 (2019)

    Google Scholar 

  40. Sebe, N., Cohen, I., Huang, T.S.: Multimodal emotion recognition. In: Handbook of Pattern Recognition and Computer Vision. World Scientific, pp. 387–409 (2005)

    Google Scholar 

  41. Soleymani, M., Garcia, D., Jou, B., Schuller, B., Chang, S.-F., Pantic, M.: A survey of multimodal sentiment analysis. Image Vis. Comput. 65, 3–14 (2017)

    Article  Google Scholar 

  42. Busso, C., et al.: IEMOCAP: interactive emotional dyadic motion capture database. Lang. Resour. Eval. 42(4), 335–359 (2008)

    Article  Google Scholar 

  43. Tripathi, S., Beigi, H.S.M.: Multi-modal emotion recognition on IEMOCAP dataset using deep learning, CoRR, vol. abs/1804.05788 (2018). http://arxiv.org/abs/1804.05788

  44. Chernykh, V., Prihodko, P.: Emotion recognition from speech with recurrent neural networks (2018)

    Google Scholar 

  45. Poria, S., Majumder, N., Hazarika, D., Cambria, E., Hussain, A., Gelbukh, A.: Multimodal sentiment analysis: addressing key issues and setting up the baselines. IEEE Intell. Syst. 33, 17–25 (2018)

    Article  Google Scholar 

  46. Acheampong, F.A., Wenyu, C., Nunoo-Mensah, H.: Text-based emotion detection: advances, challenges, and opportunities. Eng. Rep. 2(7), e12189 (2020)

    Google Scholar 

  47. Xu, D., Tian, Z., Lai, R., Kong, X., Tan, Z., Shi, W.: Deep learning based emotion analysis of microblog texts. Inf. Fusion 64, 1–11 (2020)

    Article  Google Scholar 

  48. Rashid, U., Iqbal, M.W., Skiandar, M.A., Raiz, M.Q., Naqvi, M.R., Shahzad, S.K.: Emotion detection of contextual text using deep learning. In: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–5. IEEE (2020)

    Google Scholar 

  49. Acheampong, F.A., Nunoo-Mensah, H., Chen, W.: Transformer models for text-based emotion detection: a review of BERT-based approaches. Artif. Intell. Rev. 54(8), 5789–5829 (2021). https://doi.org/10.1007/s10462-021-09958-2

    Article  Google Scholar 

  50. Su, M.-H., Wu, C.-H., Huang, K.-Y., Hong, Q.-B.: Lstm-based text emotion recognition using semantic and emotional word vectors. In: First Asian Conference on Affective Computing and Intelligent Interaction (ACII Asia), vol. 2018, pp. 1–6 (2018)

    Google Scholar 

  51. Luo, L., Wang, Y.: Emotionx-hsu: adopting pre-trained BERT for emotion classification, CoRR, vol. abs/1907.09669 (2019)

    Google Scholar 

  52. Majumder, N., Poria, S., Hazarika, D., Mihalcea, R., Gelbukh, A., Cambria, E.: Dialoguernn: an attentive RNN for emotion detection in conversations. In: AAAI, pp. 6818–6825 (2019)

    Google Scholar 

  53. Ghosal, D., Majumder, N., Poria, S., Chhaya, N., Gelbukh, A.: DialogueGCN: a graph convolutional neural network for emotion recognition in conversation. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, Association for Computational Linguistics, pp. 154–164. November 2019

    Google Scholar 

  54. Ghosal, D., Majumder, N., Gelbukh, A., Mihalcea, R., Poria, S.: COSMIC: commonsense knowledge for emotion identification in conversations. In: Findings of the Association for Computational Linguistics: EMNLP 2020, Association for Computational Linguistics, pp. 2470–2481, November 2020

    Google Scholar 

  55. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, Association for Computational Linguistics, pp. 1532–1543, October 2014. https://aclanthology.org/D14-1162

  56. Spezialetti, M., Placidi, G., Rossi, S.: Emotion recognition for human-robot interaction: recent advances and future perspectives. Front. Robot. AI 7, 532279 (2020)

    Article  Google Scholar 

  57. Ishiguro, H., Ono, T., Imai, M., Maeda, T., Kanda, T., Nakatsu, R.: Robovie: an interactive humanoid robot. Int. J. Ind. Robot 28(6), 498–504 (2001)

    Article  Google Scholar 

  58. Tian, Z., et al.: Emotion-aware multimodal pre-training for image-grounded emotional response generation. In: International Conference on Database Systems for Advanced Applications, pp. 3–19, vol. 13247. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-00129-1_1

  59. Mao, Y., Cai, F., Guo, Y., Chen, H.: Incorporating emotion for response generation in multi-turn dialogues. Appl. Intell. 52(7), 7218–7229 (2022)

    Article  Google Scholar 

  60. Cox, G.: Chatterbot. https://pypi.org/project/ChatterBot/

  61. Malle, B.F., Ullman, D.: A multi-dimensional conception and measure of human-robot trust. In: Nam, C.S., Lyons, J.B. (eds.) Trust in Human-Robot Interaction: Research and Applications, Elsevier, pp. 3–2 (2021)

    Google Scholar 

  62. Schaefer, K.E., Sanders, T.L., Yordon, R.E., Billings, D.R., Hancock, P.: Classification of robot form: factors predicting perceived trustworthiness. In: Proceedings of the Human Factors and Ergonomics Society 56th Annual Meeting, Nam, C.S., Lyons, J.B., (eds.), pp. 1548–1552 (2012)

    Google Scholar 

Download references

Acknowledgments

The development of the infrastructure detailed in this paper was funded by the Innovation for Defence Excellence and Security (IDEaS) program of the Department of National Defence of the Government of Canada, in support of the Canadian Armed Forces. The support of the NSERC Canadian Robotics Network is gratefully acknowledged. The authors are solely responsible for the content of this publication and thank Helio Perroni Filho for his helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enas Tarawneh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tarawneh, E. et al. (2023). An Infrastructure for Studying the Role of Sentiment in Human-Robot Interaction. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13646. Springer, Cham. https://doi.org/10.1007/978-3-031-37745-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37745-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37744-0

  • Online ISBN: 978-3-031-37745-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics