Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Entropy of Rectifiable and Stratified Measures

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14071))

Included in the following conference series:

Abstract

We summarize some results of geometric measure theory concerning rectifiable sets and measures. Combined with the entropic chain rule for disintegrations (Vigneaux, 2021), they account for some properties of the entropy of rectifiable measures with respect to the Hausdorff measure first studied by (Koliander et al., 2016). Then we present some recent work on stratified measures, which are convex combinations of rectifiable measures. These generalize discrete-continuous mixtures and may have a singular continuous part. Their entropy obeys a chain rule, whose “conditional term” is an average of the entropies of the rectifiable measures involved. We state an asymptotic equipartition property (AEP) for stratified measures that shows concentration on strata of a few “typical dimensions” and that links the conditional term of the chain rule to the volume growth of typical sequences in each stratum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A function \(f:X\rightarrow Y\) between metric spaces \((X, d_X)\) and \((Y,d_Y)\) is called Lipschitz if there exists \(C>0\) such that

    $$\forall x,x'\in X,\quad d_Y(f(x),f(x')) \le C d_X(x,x').$$

    The Lipschitz constant of f, denoted \({\text {Lip}}(f)\), is the smallest C that satisfies this condition.

  2. 2.

    Given a measure \(\mu \) on a \(\sigma \)-algebra \(\mathfrak {B}\) and \(B\in \mathfrak {B}\), \(\mu |_B\) denotes the restricted measure \(A\mapsto \mu |_B(A) := \mu (A\cap B)\).

References

  1. Alberti, G., Bölcskei, H., De Lellis, C., Koliander, G., Riegler, E.: Lossless analog compression. IEEE Trans. Inf. Theory 65(11), 7480–7513 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications, Clarendon Press (2000)

    MATH  Google Scholar 

  3. Cover, T.M., Thomas, J.A.: Elements of Information Theory. A Wiley-Interscience Publication. Wiley (2006)

    Google Scholar 

  4. Csiszár, I., Körner, J.: Information Theory: Coding Theorems for Discrete Memoryless Systems. Probability and Mathematical Statistics. Academic Press (1981)

    Google Scholar 

  5. De Lellis, C.: Rectifiable Sets, Densities and Tangent Measures. Zurich Lectures in Advanced Mathematics. European Mathematical Society (2008)

    Google Scholar 

  6. Federer, H.: Geometric Measure Theory. Classics in Mathematics. Springer, Heidelberg (1969). https://doi.org/10.1007/978-3-642-62010-2

    Book  MATH  Google Scholar 

  7. Koliander, G., Pichler, G., Riegler, E., Hlawatsch, F.: Entropy and source coding for integer-dimensional singular random variables. IEEE Trans. Inf. Theory 62(11), 6124–6154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics. Cambridge University Press (1995)

    Google Scholar 

  9. Morgan, F.: Geometric Measure Theory: A Beginner’s Guide. Elsevier Science (2008)

    Google Scholar 

  10. Rényi, A.: On the dimension and entropy of probability distributions. Acta Mathematica Academiae Scientiarum Hungarica 10(1), 193–215 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  11. Vigneaux, J.P.: Topology of statistical systems: a cohomological approach to information theory. Ph.D. thesis, Université de Paris (2019)

    Google Scholar 

  12. Vigneaux, J.P.: Entropy under disintegrations. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2021. LNCS, vol. 12829, pp. 340–349. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80209-7_38

    Chapter  Google Scholar 

  13. Vigneaux, J.P.: Typicality for stratified measures. IEEE Trans. Inf. Theor. arXiv preprint arXiv:2212.10809 (2022, to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Vigneaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vigneaux, J.P. (2023). On the Entropy of Rectifiable and Stratified Measures. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2023. Lecture Notes in Computer Science, vol 14071. Springer, Cham. https://doi.org/10.1007/978-3-031-38271-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38271-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38270-3

  • Online ISBN: 978-3-031-38271-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics