Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Forward and Inverse Approximation Theory for Linear Temporal Convolutional Networks

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2023)

Abstract

We present a theoretical analysis of the approximation properties of convolutional architectures when applied to the modeling of temporal sequences. Specifically, we prove an approximation rate estimate (Jackson-type result) and an inverse approximation theorem (Bernstein-type result), which together provide a comprehensive characterization of the types of sequential relationships that can be efficiently captured by a temporal convolutional architecture. The rate estimate improves upon a previous result via the introduction of a refined complexity measure, whereas the inverse approximation theorem is new.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achieser, N.I.: Theory of Approximation. Courier Corporation (2013)

    Google Scholar 

  2. Bai, S., Kolter, J.Z., Koltun, V.: An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling (2018). https://doi.org/10.48550/arXiv.1803.01271

  3. Chu, B.S., Lee, C.R.: Low-rank Tensor Decomposition for Compression of Convolutional Neural Networks Using Funnel Regularization (2021). https://doi.org/10.48550/arXiv.2112.03690

  4. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000). https://doi.org/10.1137/S0895479896305696

    Article  MathSciNet  MATH  Google Scholar 

  5. Hayashi, K., Yamaguchi, T., Sugawara, Y., Maeda, S.I.: Exploring unexplored tensor network decompositions for convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  6. Jiang, H., Li, Q., Li, Z., Wang, S.: A Brief Survey on the Approximation Theory for Sequence Modelling (2023). https://doi.org/10.48550/arXiv.2302.13752

  7. Jiang, H., Li, Z., Li, Q.: Approximation theory of convolutional architectures for time series modelling. In: Proceedings of the 38th International Conference on Machine Learning, pp. 4961–4970. PMLR (2021)

    Google Scholar 

  8. Kim, Y.D., Park, E., Yoo, S., Choi, T., Yang, L., Shin, D.: Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications (2016). https://doi.org/10.48550/arXiv.1511.06530

  9. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley Classics Library, Wiley, New York, wiley classics library ed edn. (1989)

    Google Scholar 

  10. Li, Z., Han, J., E, W., Li, Q.: Approximation and optimization theory for linear continuous-time recurrent neural networks. J. Mach. Learn. Res. 23(42), 1–85 (2022)

    Google Scholar 

  11. van den Oord, A., et al.: WaveNet: A Generative Model for Raw Audio. arXiv:1609.03499 (2016)

  12. Phan, A.H., et al.: Stable Low-rank Tensor Decomposition for Compression of Convolutional Neural Network (2020). https://doi.org/10.48550/arXiv.2008.05441

  13. Yin, W., Kann, K., Yu, M., Schütze, H.: Comparative Study of CNN and RNN for Natural Language Processing (2017). https://doi.org/10.48550/arXiv.1702.01923

  14. Yu, F., Koltun, V.: Multi-Scale Context Aggregation by Dilated Convolutions (2016). https://doi.org/10.48550/arXiv.1511.07122

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianxiao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, H., Li, Q. (2023). Forward and Inverse Approximation Theory for Linear Temporal Convolutional Networks. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2023. Lecture Notes in Computer Science, vol 14072. Springer, Cham. https://doi.org/10.1007/978-3-031-38299-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38299-4_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38298-7

  • Online ISBN: 978-3-031-38299-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics