Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computation Offloading in Beyond 5G/6G Networks with Edge Computing: Implications and Challenges

  • Conference paper
  • First Online:
Distributed Computing and Artificial Intelligence, Special Sessions I, 20th International Conference (DCAI 2023)

Abstract

The emerging beyond 5G/6G networks come with novel, latency-sensitive and computation-intensive applications that require enhanced network performance and infrastructure to meet the expected quality of experience for end users. To cope with this challenge, computation offloading leverages the benefits of multi-access edge computing to migrate the application tasks requiring additional computing resources for reduced execution delay. Although the benefits of introducing offloading mechanisms into the network might be straightforward, the implementation is not trivial due to various communication and computation trade-offs that must be made to obtain optimal offloading decisions. In this paper, we provide an overview of computation offloading with highlight on the networking perspective by looking at different offloading decisions, current research efforts, as well as the challenges that may be encountered while building an efficient and robust offloading mechanism. In addition, we provide our view on the evolution of computation offloading in 6G networks to support novel applications through enriched infrastructure and powerful artificial intelligence techniques.

This work was supported by the EC H2020 MSCA ITN-ETN IoTalentum (grant no. 953442), ECSEL JU BRAINE (grant no. 876967) and EC KDT JU CLEVER (grant no. 101097560) projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 5GPPP Architecture Working Group: The 6G Architecture Landscape (2023). https://doi.org/10.5281/zenodo.7313232

  2. Bhattacharya, A., De, P.: A survey of adaptation techniques in computation offloading. J. Netw. Comput. Appl. 78, 97–115 (2017). https://doi.org/10.1016/j.jnca.2016.10.023

    Article  Google Scholar 

  3. ETSI GS MEC 003: Multi-access edge computing (MEC); Framework and Reference Architecture (2022). v3.1.1

    Google Scholar 

  4. Hu, J., Li, Y., Zhao, G., Xu, B., Ni, Y., Zhao, H.: Deep reinforcement learning for task offloading in edge computing assisted power IoT. IEEE Access 9, 93892–93901 (2021). https://doi.org/10.1109/ACCESS.2021.3092381

    Article  Google Scholar 

  5. Huang, L., Bi, S., Zhang, Y.J.A.: Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks. IEEE Trans. Mob. Comput. 19(11), 2581–2593 (2020). https://doi.org/10.1109/TMC.2019.2928811

    Article  Google Scholar 

  6. Khayyat, M., Elgendy, I.A., Muthanna, A., Alshahrani, A.S., Alharbi, S., Koucheryavy, A.: Advanced deep learning-based computational offloading for multilevel vehicular edge-cloud computing networks. IEEE Access 8, 137052–137062 (2020). https://doi.org/10.1109/ACCESS.2020.3011705

    Article  Google Scholar 

  7. Lin, L., Liao, X., Jin, H., Li, P.: Computation offloading toward edge computing. Proc. IEEE 107(8), 1584–1607 (2019). https://doi.org/10.1109/JPROC.2019.2922285

    Article  Google Scholar 

  8. Liu, Y., Yu, H., Xie, S., Zhang, Y.: Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks. IEEE Trans. Veh. Technol. 68(11), 11158–11168 (2019). https://doi.org/10.1109/TVT.2019.2935450

    Article  Google Scholar 

  9. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017). https://doi.org/10.1109/COMST.2017.2682318

    Article  Google Scholar 

  10. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017). https://doi.org/10.1109/COMST.2017.2745201

    Article  Google Scholar 

  11. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data (2023)

    Google Scholar 

  12. Shakarami, A., Ghobaei-Arani, M., Shahidinejad, A.: A survey on the computation offloading approaches in mobile edge computing: a machine learning-based perspective. Comput. Netw. 182, 107496 (2020). https://doi.org/10.1016/j.comnet.2020.107496

    Article  Google Scholar 

  13. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge Computing: Vision and Challenges. IEEE Internet Things J. 3(5), 637–646 (2016). https://doi.org/10.1109/JIOT.2016.2579198

    Article  Google Scholar 

  14. Tang, M., Wong, V.W.: Deep reinforcement learning for task offloading in mobile edge computing systems. IEEE Trans. Mob. Comput. 21(6), 1985–1997 (2022). https://doi.org/10.1109/TMC.2020.3036871

    Article  Google Scholar 

  15. The 5G Infrastructure Association: European Vision for the 6G Network Ecosystem (2021). https://doi.org/10.5281/zenodo.5007671

  16. Xiao, H., Xu, C., Ma, Y., Yang, S., Zhong, L., Muntean, G.M.: Edge intelligence: a computational task offloading scheme for dependent IoT application. IEEE Trans. Wirel. Commun. 21(9), 7222–7237 (2022). https://doi.org/10.1109/TWC.2022.3156905

    Article  Google Scholar 

  17. Yu, S., Chen, X., Zhou, Z., Gong, X., Wu, D.: When deep reinforcement learning meets federated learning: intelligent multitimescale resource management for multiaccess edge computing in 5G ultra-dense network. IEEE Internet Things J. 8(4), 2238–2251 (2021). https://doi.org/10.1109/JIOT.2020.3026589

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalina Stan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stan, C., Rommel, S., Vegas Olmos, J.J., Tafur Monroy, I. (2023). Computation Offloading in Beyond 5G/6G Networks with Edge Computing: Implications and Challenges. In: Mehmood, R., et al. Distributed Computing and Artificial Intelligence, Special Sessions I, 20th International Conference. DCAI 2023. Lecture Notes in Networks and Systems, vol 741. Springer, Cham. https://doi.org/10.1007/978-3-031-38318-2_47

Download citation

Publish with us

Policies and ethics