Abstract
We introduce a new idealized model of hash functions, which we refer to as the pseudorandom oracle (Pr\(\mathcal {O}\)) model. Intuitively, it allows us to model cryptosystems that use the code of an ideal hash function in a non-black-box way. Formally, we model hash functions via a combination of a pseudorandom function (PRF) family and an ideal oracle. A user can initialize the hash function by choosing a PRF key k and mapping it to a public handle h using the oracle. Given the handle h and some input x, the oracle can also be called to evaluate the PRF at x with the corresponding key k. A user who chooses the PRF key k therefore has a complete description of the hash function and can use its code in non-black-box constructions, while an adversary, who just gets the handle h, only has black-box access to the hash function via the oracle.
As our main result, we show how to construct ideal obfuscation in the Pr\(\mathcal {O}\) model, starting from functional encryption (FE), which in turn can be based on well-studied polynomial hardness assumptions. In contrast, we know that ideal obfuscation cannot be instantiated in the basic random oracle model under any assumptions. We believe our result provides heuristic justification for the following: (1) most natural security goals implied by ideal obfuscation can be achieved in the real world; (2) obfuscation can be constructed from FE at polynomial security loss.
We also discuss how to interpret our result in the Pr\(\mathcal {O}\) model as a construction of ideal obfuscation using simple hardware tokens or as a way to bootstrap ideal obfuscation for PRFs to that for all functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Ideal obfuscation is similar to virtual black-box (VBB) obfuscation [11], except that we consider it to be an idealized model rather than a security definition. In contrast, VBB was originally intended as a security definition, with some artificial choices (restricting adversaries to only 1-bit output) to rule out obvious counterexamples. Nevertheless, the main result of [11] shows that even with these restrictions, VBB security is unachievable in its full generality in the plain model.
- 2.
- 3.
This is yet another reason why the Pr\(\mathcal {O}\) model and the ROM are morally equivalent. The ROM essentially says that good hash functions are “self-obfuscated PRFs” since having the full description of a hash function is no better than just having oracle access to a random function, which is also what the Pr\(\mathcal {O}\) model stipulates.
- 4.
We assume that \({\textsf{SHA3}(k{\parallel }{\cdot })}\) is a PRF with k being the (secret) key, which is a very mild assumption for real-world hash functions.
- 5.
This is similar to Shoup’s generic group model [49]. Alternatively, we can define the handle as a special symbol that cannot be operated on, like in Maurer’s GGM [43]. The two models are studied in the recent work of [51]. We choose Shoup’s flavor for its potential flexibility, although our construction is compatible with Maurer’s. However, in either flavor, per definition, h is independent of k, and the difference between practice and formalism still prevails.
- 6.
The encryption time is \(|z|{\text {poly}}(\lambda )\), where z is the plaintext. This is independent of the functions for which secret keys are issued.
- 7.
The required properties can be achieved by standard PRG extension techniques and indifferentiable domain extension of random oracles.
- 8.
In retrospect, this notion is an interpolation between functional encryption and unary function-revealing encryption [37].
- 9.
In a standard public-key FE, the scheme is set up for a master public/secret key pair not tied to f, and a key for f can be derived separately from the master secret key. Weak selective security means that the adversary chooses \(f,z_0,z_1\) independent of the master public key. Full adaptive security against unbounded collusion means that the adversary can choose \(z_0,z_1\) and arbitrarily many \(f_q\)’s after seeing the master public key and in an arbitrary interleaving manner.
References
Agrawal, S., et al.: Secure computation from one-way noisy communication, or: anti-correlation via anti-concentration. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 124–154. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_5
Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_32
Ananth, P., Chung, K.M., Fan, X., Qian, L.: Collusion-resistant functional encryption for RAMs. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol. 13791, pp. 160–194. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22963-3_6
Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_15
Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional encryption for simple functions. Cryptology ePrint Archive, Report 2015/730 (2015). https://eprint.iacr.org/2015/730
Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 125–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_6
Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 162–172. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_9
Badrinarayanan, S., Ishai, Y., Khurana, D., Sahai, A., Wichs, D.: Refuting the dream XOR lemma via ideal obfuscation and resettable MPC. In: Dachman-Soled, D. (ed.) ITC 2023. LIPIcs, vol. 230, pp. 1–21. Schloss Dagstuhl (2022). https://doi.org/10.4230/LIPIcs.ITC.2022.10
Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS, pp. 106–115. IEEE Computer Society Press, October 2001. https://doi.org/10.1109/SFCS.2001.959885
Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfuscation for evasive functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 26–51. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_2
Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93, pp. 62–73. ACM Press, November 1993. https://doi.org/10.1145/168588.168596
Bitansky, N., Canetti, R.: On strong simulation and composable point obfuscation. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_28
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 111–120. ACM Press, June 2013. https://doi.org/10.1145/2488608.2488623
Bitansky, N., Canetti, R., Goldwasser, S., Halevi, S., Kalai, Y.T., Rothblum, G.N.: Program obfuscation with leaky hardware. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 722–739. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_39
Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_15
Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171–190. IEEE Computer Society Press, October 2015. https://doi.org/10.1109/FOCS.2015.20
Boyle, E., Ishai, Y., Pass, R., Wootters, M.: Can we access a database both locally and privately? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 662–693. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_22
Canetti, R., Kalai, Y.T., Paneth, O.: On obfuscation with random oracles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 456–467. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_18
Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_19
Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-ciphertext secure fully homomorphic encryption. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 213–240. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_8
De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the achievability of simulation-based security for functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 519–535. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_29
Döttling, N., Mie, T., Müller-Quade, J., Nilges, T.: Basing obfuscation on simple tamper-proof hardware assumptions. Cryptology ePrint Archive, Report 2011/675 (2011). https://eprint.iacr.org/2011/675
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013. https://doi.org/10.1109/FOCS.2013.13
Garg, S., Srinivasan, A.: Single-key to multi-key functional encryption with polynomial loss. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 419–442. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_16
Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: 44th FOCS, pp. 102–115. IEEE Computer Society Press, October 2003. https://doi.org/10.1109/SFCS.2003.1238185
Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run Turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_30
Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_11
Hamlin, A., Holmgren, J., Weiss, M., Wichs, D.: On the plausibility of fully homomorphic encryption for RAMs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 589–619. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_21
Ishai, Y., Korb, A., Lou, P., Sahai, A.: Beyond the Csiszár-korner bound: best-possible wiretap coding via obfuscation. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol. 13508. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_20
Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 668–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_26
Jain, A., Lin, H., Luo, J.: On the optimal succinctness and efficiency of functional encryption and attribute-based encryption. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol. 14006, pp. 479–510. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30620-4_16
Jain, A., Lin, H., Luo, J., Wichs, D.: The pseudorandom oracle model and ideal obfuscation. Cryptology ePrint Archive, Report 2022/1204 (2022). https://eprint.iacr.org/2022/1204
Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: Khuller, S., Williams, V.V. (eds.) 53rd ACM STOC, pp. 60–73. ACM Press, June 2021. https://doi.org/10.1145/3406325.3451093
Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from LPN over \(\mathbb{F} _p\), DLIN, and PRGs in \({NC}^0\). In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology –EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol. 13275, pp. 670–699. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06944-4_23
Joye, M., Passelègue, A.: Function-revealing encryption. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 527–543. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_28
Kitagawa, F., Nishimaki, R., Tanaka, K.: Obfustopia built on secret-key functional encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 603–648. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_20
Kitagawa, F., Nishimaki, R., Tanaka, K., Yamakawa, T.: Adaptively secure and succinct functional encryption: improving security and efficiency, simultaneously. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 521–551. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_17
Li, B., Micciancio, D.: Compactness vs collusion resistance in functional encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 443–468. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_17
Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_17
Lin, W.K., Mook, E., Wichs, D.: Doubly efficient private information retrieval and fully homomorphic RAM computation from ring LWE. In: Saha, B., Servedio, R.A. (eds.) 55th ACM STOC, pp. 595–608. ACM Press (Jun 2023). https://doi.org/10.1145/3564246.3585175
Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005). https://doi.org/10.1007/11586821_1
Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_2
Nayak, K., et al.: HOP: hardware makes obfuscation practical. In: NDSS 2017. The Internet Society (Feb/Mar 2017). https://doi.org/10.14722/ndss.2017.23349
Nishimaki, R.: Personal communication (2022)
Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM 26(2), 361–381 (1979). https://doi.org/10.1145/322123.322138
Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press (May/Jun 2014). https://doi.org/10.1145/2591796.2591825
Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_18
Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_1
Zhandry, M.: To label, or not to label (in generic groups). In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol. 13509, , pp. 66–96. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15982-4_3
Acknowledgments
Aayush Jain was supported by gifts from CyLab of CMU and Google. Huijia Lin and Ji Luo were supported by NSF CNS-1936825 (CAREER), CNS-2026774, a JP Morgan AI Research Award, a Cisco Research Award, and a Simons Collaboration on the Theory of Algorithmic Fairness. Daniel Wichs was supported by NSF CNS-1750795, CNS-2055510, and the JP Morgan Faculty Research Award. The authors thank the anonymous reviewers for their valuable feedback.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Jain, A., Lin, H., Luo, J., Wichs, D. (2023). The Pseudorandom Oracle Model and Ideal Obfuscation. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14084. Springer, Cham. https://doi.org/10.1007/978-3-031-38551-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-38551-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38550-6
Online ISBN: 978-3-031-38551-3
eBook Packages: Computer ScienceComputer Science (R0)