Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hardness of Graph-Structured Algebraic and Symbolic Problems

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14079))

Included in the following conference series:

  • 762 Accesses

Abstract

In this paper, we study the hardness of solving graph-structured linear systems with coefficients over a finite field \(\mathbb {Z}_p\) and over a polynomial ring \(\mathbb {F}[x_1,\ldots ,x_t]\).

We reduce solving general linear systems in \(\mathbb {Z}_p\) to solving unit-weight low-degree graph Laplacians over \(\mathbb {Z}_p\) with a polylogarithmic overhead on the number of non-zeros. Given the hardness of solving general linear systems in \(\mathbb {Z}_p\) [Casacuberta-Kyng 2022], this result shows that it is unlikely that we can generalize Laplacian solvers over \(\mathbb {R}\), or finite-element based methods over \(\mathbb {R}\) in general, to a finite-field setting. We also reduce solving general linear systems over \(\mathbb {Z}_p\) to solving linear systems whose coefficient matrices are walk matrices (matrices with all ones on the diagonal) and normalized Laplacians (Laplacians that are also walk matrices) over \(\mathbb {Z}_p\).

We often need to apply linear system solvers to random linear systems, in which case the worst case analysis above might be less relevant. For example, we often need to substitute variables in a symbolic matrix with random values. Here, a symbolic matrix is simply a matrix whose entries are in a polynomial ring \(\mathbb {F}[x_1,\ldots ,x_t]\). We formally define the reducibility between symbolic matrix classes, which are classified in terms of the degrees of the entries and the number of occurrences of the variables. We show that the determinant identity testing problem for symbolic matrices with polynomial degree 1 and variable multiplicity at most 3 is at least as hard as the same problem for general matrices over \(\mathbb {R}\).

J. Chen, Y. Huang and R. Peng—Part of this work was done while at Georgia Institute of Technology.

R. Wang—Part of this work was done while at Swarthmore College.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alon, N., Yuster, R.: Solving linear systems through nested dissection. In: FOCS 2010, pp. 225–234. IEEE Computer Society (2010). https://doi.org/10.1109/FOCS.2010.28

  2. Chen, J., Gao, Y., Huang, Y., Peng, R., Wang, R.: Hardness of graph-structured algebraic and symbolic problems (2022). https://arxiv.org/abs/2109.12736v3

  3. Cheung, H.Y., Lau, L.C., Leung, K.M.: Graph connectivities, network coding, and expander graphs. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 190–199. IEEE (2011)

    Google Scholar 

  4. Cohen, M.B., et al.: Solving directed Laplacian systems in nearly-linear time through sparse LU factorizations. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 898–909. IEEE (2018)

    Google Scholar 

  5. Daitch, S.I., Spielman, D.A.: Support-graph preconditioners for 2-dimensional trusses. CoRR abs/cs/0703119 (2007). http://arxiv.org/abs/cs/0703119

  6. Daitch, S.I., Spielman, D.A.: Faster approximate Lossy generalized flow via interior point algorithms. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 451–460. Association for Computing Machinery, New York (2008). https://doi.org/10.1145/1374376.1374441

  7. Demillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing. Inf. Process. Lett. 7(4), 193–195 (1978). https://doi.org/10.1016/0020-0190(78)90067-4. https://www.sciencedirect.com/science/article/pii/0020019078900674

  8. Dixon, J.D.: Exact solution of linear equations using P-adic expansions. Numer. Math. 40(1), 137–141 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10(2), 345–363 (1973). https://doi.org/10.1137/0710032

    Article  MathSciNet  MATH  Google Scholar 

  10. Jambulapati, A., Sidford, A.: Ultrasparse ultrasparsifiers and faster Laplacian system solvers. In: Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pp. 540–559. Society for Industrial and Applied Mathematics, USA (2021)

    Google Scholar 

  11. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC 2003, pp. 355–364. Association for Computing Machinery, New York (2003). https://doi.org/10.1145/780542.780595

  12. Kelner, J.A., Orecchia, L., Sidford, A., Zhu, Z.A.: A simple, combinatorial algorithm for solving SDD systems in nearly-linear time. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 911–920 (2013)

    Google Scholar 

  13. Koutis, I., Miller, G.L., Peng, R.: A nearly-m log n time solver for SDD linear systems. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 590–598 (2011). https://doi.org/10.1109/FOCS.2011.85

  14. Koutis, I., Miller, G.L., Peng, R.: Approaching optimality for solving SDD linear systems. SIAM J. Comput. 43(1), 337–354 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kyng, R., Lee, Y.T., Peng, R., Sachdeva, S., Spielman, D.A.: Sparsified Cholesky and multigrid solvers for connection Laplacians. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 842–850 (2016)

    Google Scholar 

  16. Kyng, R., Peng, R., Schwieterman, R., Zhang, P.: Incomplete nested dissection. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 404–417 (2018)

    Google Scholar 

  17. Kyng, R., Zhang, P.: Hardness results for structured linear systems. SIAM J. Comput. 49(4), FOCS17-280 (2020)

    Google Scholar 

  18. Lee, Y.T., Sidford, A.: Solving linear programs with Sqrt (rank) linear system solves. arXiv preprint arXiv:1910.08033 (2019)

  19. Lipton, R.J., Rose, D.J., Tarjan, R.E.: Generalized nested dissection. SIAM J. Numer. Anal. 16(2), 346–358 (1979). https://doi.org/10.1137/0716027

    Article  MathSciNet  MATH  Google Scholar 

  20. Nie, Z.: Matrix anti-concentration inequalities with applications. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pp. 568–581 (2022)

    Google Scholar 

  21. Odlyzko, A.M.: Discrete logarithms in finite fields and their cryptographic significance. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 224–314. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39757-4_20

    Chapter  Google Scholar 

  22. Peng, R., Vempala, S.S.: Solving sparse linear systems faster than matrix multiplication. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 504–521. SIAM (2021)

    Google Scholar 

  23. Saxena, N.: Progress on polynomial identity testing. Bull. EATCS 99, 49–79 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Saxena, N.: Progress on polynomial identity testing-II. In: Agrawal, M., Arvind, V. (eds.) Perspectives in Computational Complexity. PCSAL, vol. 26, pp. 131–146. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05446-9_7

    Chapter  Google Scholar 

  25. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980). https://doi.org/10.1145/322217.322225

    Article  MathSciNet  MATH  Google Scholar 

  26. Shpilka, A., Yehudayoff, A.: Arithmetic circuits: a survey of recent results and open questions. Found. Trends® Theor. Comput. Sci. 5(3–4), 207–388 (2010)

    Google Scholar 

  27. Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, pp. 81–90 (2004)

    Google Scholar 

  28. Storjohann, A.: The shifted number system for fast linear algebra on integer matrices. J. Complex. 21(4), 609–650 (2005). https://doi.org/10.1016/j.jco.2005.04.002. https://www.sciencedirect.com/science/article/pii/S0885064X05000312. Festschrift for the 70th Birthday of Arnold Schonhage

  29. Tutte, W.T.: The factorization of linear graphs. J. Lond. Math. Soc. s1–22(2), 107–111 (1947). https://doi.org/10.1112/jlms/s1-22.2.107

  30. Valiant, L.G.: Completeness classes in algebra. In: Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, pp. 249–261 (1979)

    Google Scholar 

  31. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the Twentieth International Conference on International Conference on Machine Learning, ICML 2003, pp. 912–919. AAAI Press (2003)

    Google Scholar 

  32. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09519-5_73

    Chapter  Google Scholar 

  33. Zomorodian, A., Carlsson, G.: Computing persistent homology. In: Proceedings of the Twentieth Annual Symposium on Computational Geometry, pp. 347–356 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Gao, Y., Huang, Y., Peng, R., Wang, R. (2023). Hardness of Graph-Structured Algebraic and Symbolic Problems. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38906-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38905-4

  • Online ISBN: 978-3-031-38906-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics