Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approximate Core Allocations for Edge Cover Games

  • Conference paper
  • First Online:
Frontiers of Algorithmics (IJTCS-FAW 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13933))

Included in the following conference series:

  • 364 Accesses

Abstract

Edge cover games are cooperative cost games arising from edge cover problems, where each player controls a vertex and the cost of a coalition is the minimum weight of edge covers in the subgraph induced by the coalition. In this paper, we study the approximate core for edge cover games. We show that the ratio of approximate core depends on the shortest odd cycle of underlying graphs and the \(\frac{3}{4}\)-core is always non-empty. We also show that the approximate ratio \(\frac{3}{4}\) is tight, since it coincides with the integrality gap of the natural LP for edge cover problems.

This work is supported in part by the National Natural Science Foundation of China (Nos. 12001507, 11871442, 11971447 and 12171444) and Natural Science Foundation of Shandong (No. ZR2020QA024).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. AC, vol. 24. Springer, Berlin (2003)

    MATH  Google Scholar 

  2. Balinski, M.L.: Integer programming: methods, uses, computations. Manag. Sci. 12(3), 253–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational aspects of cooperative game theory. Synth. Lect. Artif. Intell. Mach. Learn. 5(6), 1–168 (2011)

    MATH  Google Scholar 

  4. Cornuéjols, G.: Combinatorial Optimization: Packing and Covering. SIAM (2001)

    Google Scholar 

  5. Carr, R., Vempala, S.: Towards a \(\frac{4}{3}\) approximation for the asymmetric traveling salesman problem. In: SODA, pp. 116–125 (2000)

    Google Scholar 

  6. Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of combinatorial optimization games. Math. Oper. Res. 24(3), 751–766 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Edmonds, J.: Matching: a well-solved class of integer programs. Combinatorial Structures and their Applications, pp. 89–92 (1970)

    Google Scholar 

  8. Faigle, U., Fekete, S.P., Hochstättler, W., Kern, W.: On approximately fair cost allocation in Euclidean TSP games. Oper. Res. Spektrum 20(1), 29–37 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faigle, U., Kern, W.: On some approximately balanced combinatorial cooperative games. Z. Oper. Res. 38(2), 141–152 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Faigle, U., Kern, W.: Approximate core allocation for binpacking games. SIAM J. Discret. Math. 11(3), 387–399 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Faigle, U., Kern, W., Fekete, S.P., Hochstättler, W.: The nucleon of cooperative games and an algorithm for matching games. Math. Program. 83(1–3), 195–211 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gillies, D.B.: Solutions to general non-zero-sum games. Contrib. Theory Games 4(40), 47–85 (1959)

    MathSciNet  MATH  Google Scholar 

  13. Goemans, M.X., Skutella, M.: Cooperative facility location games. J. Algorithms 50(2), 194–214 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, D., Pettie, S.: Approximate generalized matching: \(f\)-factors and \(f\)-edge covers. Algorithmca 84, 1952–1992 (2022)

    Article  MATH  Google Scholar 

  15. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4), 413–423 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kern, W., Paulusma, D.: On the core and f-nucleolus of flow games. Math. Oper. Res. 12 (2009)

    Google Scholar 

  17. Kern, W., Qiu, X.: Integrality gap analysis for bin packing games. Oper. Res. Lett. 40(5), 360–363 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim, H.K.: Note on fractional edge covering games. Glob. J. Pure Appl. Math. 12(6), 4661–4675 (2016)

    MathSciNet  Google Scholar 

  19. Kolen, A.: Solving covering problems and the uncapacitated plant location problem on trees. Eur. J. Oper. Res. 12(3), 266–278 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Y., Fang, Q.: Balancedness of edge covering games. Appl. Math. Lett. 20(10), 1064–1069 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nemhauser, G., Trotter, L.E.: Vertex packings: structural properties and algorithms. Math. Program. 8(1), 232–248 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  23. Park, B., Kim, S.R., Kim, H.K.: On the cores of games arising from integer edge covering functions of graphs. J. Comb. Optim. 26(4), 786–798 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peleg, B., Sudhölter, P.: Introduction to the Theory of Cooperative Games, vol. 34. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  25. Potters, J.A., Curiel, I.J., Tijs, S.H.: Traveling salesman games. Math. Program. 53(1), 199–211 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Qiu, X., Kern, W.: Approximate core allocations and integrality gap for the bin packing game. Theor. Comput. Sci. 627, 26–35 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun, L., Karwan, M.H.: On the core of traveling salesman games. Oper. Res. Lett. 43(4), 365–369 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vazirani, V.V.: The general graph matching game: approximate core. Games Econom. Behav. 132, 478–486 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. van Velzen, B.: Dominating set games. Oper. Res. Lett. 32(6), 565–573 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xiao, H., Lu, T., Fang, Q.: Approximate core allocations for multiple partners matching games. arXiv:2107.01442 (2021)

Download references

Acknowledgements

We would like to extend our sincere thanks to the anonymous reviewers for their thorough and constructive feedback, which helped us significantly improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, T., Xiao, H., Fang, Q. (2023). Approximate Core Allocations for Edge Cover Games. In: Li, M., Sun, X., Wu, X. (eds) Frontiers of Algorithmics. IJTCS-FAW 2023. Lecture Notes in Computer Science, vol 13933. Springer, Cham. https://doi.org/10.1007/978-3-031-39344-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39344-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39343-3

  • Online ISBN: 978-3-031-39344-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics