Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adding Result Diversification to \(k\)NN-Based Joins in a Map-Reduce Framework

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14146))

Included in the following conference series:

Abstract

While the k-Nearest Neighbors (\(k\)NN) join fetches the k closest objects from a dataset for each element of a reference collection, a \(k\)NN join with result diversification aims at retrieving the k nearest objects to each reference entry that are dissimilar among themselves. Under the Metric Space Model, the distance-based ternary relationship between each search reference, the dataset, and the result set can be explicitly used to define a coverage-based criterion, namely Influence, that ensures diversification by dismissing nearby regions during the join operation. However, adding result diversification to \(k\)NN joins by means of Influence criteria in large-scale, big data frameworks is still an open issue since existing algorithms do not consider shared-nothing environments. To fulfill this gap, we extend the nested Better Results with Influence Diversification algorithm (BRID\(_k\)) to a Map-Reduce framework. In particular, this study introduces two new algorithms: the P-BRID\(_k\) and the SP-BRID\(_k\). The P-BRID\(_k\) method relies on partitioning the objects by their proximity to a set of pivots so that the search space locality is preserved throughout the mapped distance-based comparisons. The SP-BRID\(_k\) method expands the P-BRID\(_k\) by using a data replication strategy where a window of the search space is copied across the partitions for enhancing the Influence-based pruning of the nearest objects. We performed an extensive evaluation of both methods over low and high-dimensional datasets on an Apache Hadoop cluster, and the results indicate that (i) P-BRID\(_k\) has consistently outperformed the nested BRID\(_k\) implementation, with gains up to 80\(\%\) in terms of Recall (fraction of points among true diversified neighbors), (ii) fine-tuned SP-BRID\(_k\) has enhanced the P-BRID\(_k\) performance at a small overhead cost in data replication, and (iii) the SP-BRID\(_k\) elapsed time has scaled smoothly with the number of partitions, yielding high Recalls for \(k\)NN joins with result diversification for a controlled overhead ratio.

This study was supported by CAPES, CNPq and FAPERJ (grant numbers SEI-016517/2021 and E-26/202.806/2019).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    If \(M\times k\) exceeds the worker available memory, then the reduce task can be recursively split into two workers (and one merger) with \((M\times k/2)\) space requirement.

  2. 2.

    Source-code and datasets in https://github.com/rviniciussouza/BRIDkD.

  3. 3.

    \(ID = \lceil \mu _\mathcal {O}^2/2 \cdot \sigma _\mathcal {O}^2\rceil \), where \(\mu _\mathcal {O}\) and \(\sigma _\mathcal {O}\) are the mean and standard deviation of the pairwise distance distribution within \(\mathcal {O}\), respectively [4].

References

  1. Armbrust, M., Das, T., et al.: Delta lake: high-performance ACID table storage over cloud object stores. VLDB 13(12), 3411–3424 (2020)

    Google Scholar 

  2. Bohm, C., Krebs, F.: The k-nearest neighbour join: turbo charging the KDD process. Knowl. Inf. Syst. 6(6), 728–749 (2004)

    Article  Google Scholar 

  3. Čech, P., Maroušek, J., Lokoč, J., Silva, Y.N., Starks, J.: Comparing MapReduce-based k-NN similarity joins on Hadoop for high-dimensional data. In: Cong, G., Peng, W.-C., Zhang, W.E., Li, C., Sun, A. (eds.) ADMA 2017. LNCS (LNAI), vol. 10604, pp. 63–75. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69179-4_5

    Chapter  Google Scholar 

  4. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.: Searching in metric spaces. Comput. Surv. 33(3), 273–321 (2001)

    Article  Google Scholar 

  5. Chen, G., Yang, K., Chen, L., Gao, Y., Zheng, B., Chen, C.: Metric similarity joins using MapReduce. TKDE 29(3), 656–669 (2016)

    Google Scholar 

  6. Chen, L., et al.: Indexing metric spaces for exact similarity search. Comput. Surv. 55(6), 1–39 (2022)

    Article  MathSciNet  Google Scholar 

  7. Drosou, M., Jagadish, H., Pitoura, E., Stoyanovich, J.: Diversity in big data: a review. Big Data 5, 73–84 (2017)

    Article  Google Scholar 

  8. Hetland, M.L.: The basic principles of metric indexing. In: Coello, C.A.C., Dehuri, S., Ghosh, S. (eds.) Swarm Intelligence for Multi-objective Problems in Data Mining. SCI, vol. 242, pp. 199–232. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03625-5_9

    Chapter  Google Scholar 

  9. Jacox, E.H., Samet, H.: Metric space similarity joins. TODS 33(2), 1–38 (2008)

    Article  Google Scholar 

  10. Jasbick, D., Santos, L., Marques, P., Traina, A., Oliveira, D., Bedo, M.: Pushing diversity into higher dimensions: the LID effect on diversified similarity searching. Inf. Syst. 114, 102–116 (2023)

    Article  Google Scholar 

  11. Kim, C., Shim, K.: Supporting set-valued joins in NoSQL using MapReduce. Inf. Syst. 49, 52–64 (2015)

    Article  Google Scholar 

  12. Rong, C., Cheng, X., Chen, Z., Huo, N.: Similarity joins for high-dimensional data using Spark. Concurr. Comput.: Pract. Experience 31(20), 1–17 (2019)

    Article  Google Scholar 

  13. Santos, L.F.D., Carvalho, L.O., Oliveira, W.D., Traina, A.J.M., Traina, C.: Diversity in similarity joins. In: Amato, G., Connor, R., Falchi, F., Gennaro, C. (eds.) SISAP 2015. LNCS, vol. 9371, pp. 42–53. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25087-8_4

    Chapter  Google Scholar 

  14. Santos, L., Oliveira, W., Ferreira, M., Traina, A., Traina, C., Jr.: Parameter-free and domain-independent similarity search with diversity. In: SSDBM (2013)

    Google Scholar 

  15. Silva, Y.N., Reed, J.M., Tsosie, L.M.: MapReduce-based similarity join for metric spaces. In: WCI, pp. 1–8 (2012)

    Google Scholar 

  16. Ukey, N., Yang, Z., Li, B., Zhang, G., Hu, Y., Zhang, W.: Survey on exact kNN queries over high-dimensional data space. Sensors 23(2), 629 (2023)

    Article  Google Scholar 

  17. Wu, J., Zhang, Y., Wang, J., Lin, C., Fu, Y., Xing, C.: Scalable metric similarity join using MapReduce. In: ICDE, pp. 1662–1665 (2019)

    Google Scholar 

  18. Yianilos, P.N.: Data structures and algorithms for nearest neighbor. In: ACM-SIAM Symposium on Discrete Algorithms, vol. 66, p. 311 (1993)

    Google Scholar 

  19. Zhu, Y., Chen, L., Gao, Y., Jensen, C.S.: Pivot selection algorithms in metric spaces: a survey and experimental study. VLDB J. 31(1), 23–47 (2021). https://doi.org/10.1007/s00778-021-00691-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Bedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Souza, V., Carvalho, L.O., de Oliveira, D., Bedo, M., Santos, L.F.D. (2023). Adding Result Diversification to \(k\)NN-Based Joins in a Map-Reduce Framework. In: Strauss, C., Amagasa, T., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2023. Lecture Notes in Computer Science, vol 14146. Springer, Cham. https://doi.org/10.1007/978-3-031-39847-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39847-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39846-9

  • Online ISBN: 978-3-031-39847-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics