Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

FIDOC: A New Combination of Fuzzy Impulse Noise Detection and Open-Close Filtering

  • Conference paper
  • First Online:
Fuzzy Logic and Technology, and Aggregation Operators (EUSFLAT 2023, AGOP 2023)

Abstract

Image noise can be viewed as unwanted disturbances in a digital image that should be removed or reduced before further processing and analysis. Impulsive noise, also known as impulse noise, is a very disruptive type of noise, characterized by abrupt variations in brightness in a subset of the image pixels. Impulsive noise commonly occurs during image acquisition and transmission. To mitigate its effects, various impulsive noise reduction methods have been proposed by the image processing community. In contrast to classical filters such as the median filter, most current impulsive noise reduction techniques implement a two-step approach that consists of a noise detection phase to identify noisy pixels and a filtering phase to reduce the amount of noise in the presumably corrupted pixels.

The approach presented in this paper is also along this line. To be more precise, we draw on the principles of two state-of-the-art impulsive noise reduction methods, namely the adaptive fuzzy transform based image filter (ATIF) and the improved fuzzy mathematical morphology open-close filter (i-FMMOCS), in order to propose a new method for general impulsive noise reduction.

Supported in part by CNPq under grant no. 315638/2020-6 (“Lattice Computing with an Emphasis on \(\mathbb {L}\)-Fuzzy Systems and Mathematical Morphology”) and FAPESP under grant no. 2020/09838-0 (Brazilian Institute of Data Science) as well as the Grant PID2020-113870GB-I00-“Desarrollo de herramientas de Soft Computing para la Ayuda al Diagnóstico Clínico y a la Gestión de Emergencias (HESOCODICE)”, funded by MCIN/AEI/10.13039/501100011033/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kerre, E.E., Nachtegael, M.: Fuzzy Techniques in Image Processing. STUDFUZZ, vol. 52. Springer, New York (2000). https://doi.org/10.1007/978-3-7908-1847-5

    Book  MATH  Google Scholar 

  2. Schulte, S., Nachtegael, M., De Witte, V., Van der Weken, D., Kerre, E.E.: A fuzzy impulse noise detection and reduction method. IEEE Trans. Image Process. 15(5), 1153–1162 (2006)

    Article  Google Scholar 

  3. Schuster, T., Sussner, P.: An adaptive image filter based on the fuzzy transform for impulse noise reduction. Soft. Comput. 21(13), 3659–3672 (2017)

    Article  Google Scholar 

  4. Yüksel, M.E., Bastürk, A.: Application of type 2 fuzzy logic filtering to reduce noise in color images. IEEE Comput. Intell. Mag. 7(3), 25–36 (2012)

    Article  Google Scholar 

  5. Chen, C.L.P., Liu, L., Chen, L., Tang, Y.Y., Zhou, Y.: Weighted couple sparse representation with classified regularization for impulse noise removal. IEEE Trans. Image Process. 24(11), 4014–4026 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Panetta, K., Bao, L., Agaian, S.: A new unified impulse noise removal algorithm using a new reference sequence-to-sequence similarity detector. IEEE Access 6, 37225–37236 (2018)

    Article  Google Scholar 

  7. Rani, S., Chabbra, Y., Malik, K.: Adaptive window-based filter for high-density impulse noise suppression. Measur. Sens. 24, 100455 (2022)

    Article  Google Scholar 

  8. Gonzalez-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: Improving salt and pepper noise removal using a fuzzy mathematical morphology-based filter. Appl. Soft Comput. 63, 167–180 (2018)

    Article  Google Scholar 

  9. Sussner, P., Schuster, T.: Linear versus lattice fuzzy transforms: image algebra representation, observations, and results in image denoising. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8 (2018)

    Google Scholar 

  10. Perfilieva, I.: Fuzzy transforms: theory and applications. Fuzzy Sets Syst. 157, 993–1023 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sussner, P.: Lattice fuzzy transforms from the perspective of mathematical morphology. Fuzzy Sets Syst. 288, 115–128 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ritter, G.X., Wilson, J.N.: Handbook of Computer Vision Algorithms in Image Algebra, 2nd edn. CRC Press, Boca Raton (2001)

    MATH  Google Scholar 

  13. Bloch, I., Maitre, H.: Fuzzy mathematical morphologies: a comparative study. Pattern Recogn. 28(9), 1341–1387 (1995)

    Article  MathSciNet  Google Scholar 

  14. De Baets, B.: Fuzzy morphology: a logical approach. In: Ayyub, B.M., Gupta, M.M. (eds.) Uncertainty Analysis in Engineering and Science: Fuzzy Logic. Statistics, and Neural Network Approach, pp. 53–67. Kluwer Academic Publishers, Norwell (1997)

    Google Scholar 

  15. Baczyński, M., Jayaram, B.: Fuzzy Implications. STUDFUZZ, vol. 231. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69082-5

    Book  MATH  Google Scholar 

  16. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, London (2000)

    Book  MATH  Google Scholar 

  17. Bindal, N., Ghumaan, R.S., Sohi, P.J.S., Sharma, N., Joshi, H., Garg, B.: A systematic review of state-of-the-art noise removal techniques in digital images. Multimed. Tools Appl. 81(22), 31529–31552 (2022)

    Article  Google Scholar 

  18. Yin, M., Adam, T., Paramesran, R., Hassan, M.F.: An \(\ell \)0-overlapping group sparse total variation for impulse noise image restoration. Signal Process.: Image Commun. 102, 116620 (2022)

    Google Scholar 

  19. Orazaev, A., Lyakhov, P., Baboshina, V., Kalita, D.: Neural network system for recognizing images affected by random-valued impulse noise. Appl. Sci. 13(3) (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sussner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sussner, P., González-Hidalgo, M. (2023). FIDOC: A New Combination of Fuzzy Impulse Noise Detection and Open-Close Filtering. In: Massanet, S., Montes, S., Ruiz-Aguilera, D., González-Hidalgo, M. (eds) Fuzzy Logic and Technology, and Aggregation Operators. EUSFLAT AGOP 2023 2023. Lecture Notes in Computer Science, vol 14069. Springer, Cham. https://doi.org/10.1007/978-3-031-39965-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39965-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39964-0

  • Online ISBN: 978-3-031-39965-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics