Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust Few-Shot Graph Anomaly Detection via Graph Coarsening

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2023)

Abstract

Graph anomaly detection is an important aspect of anomaly detection, especially the graph-level anomaly detection, which can be used into biomolecular research or drug molecular detection and so on. It is necessary to identify anomalies within a limited sample size as the real-world scenarios always lack of anomalous graph labels. Graph-level anomaly detection with few samples mainly faces the following problems: 1) There are not enough samples for the model to effectively learn anomalies; 2) There is noise or irrelevant information in the graph, which makes it difficult to quickly learn the key structural information of the graph. To address these issues, we propose a Robust Meta-learning-based Graph Anomaly Detection Framework via Graph Coarsening (RCM-GAD). Specifically, we employ meta-learning to effectively extract and integrate abnormal information from similar networks. Then, we use the Graph Coarsening module to obtain the key structural information of the graph for anomaly detection. We apply this framework to detect anomalies at both the graph-level and subgraph-level. We conduct experiments on four datasets, demonstrating the superiority of our proposed framework, RCM-GAD, over state-of-the-art baselines in graph-level and subgraph-level anomaly detection tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, M., Zhang, W., Zhang, W., Chen, Q., Chen, H.: Meta relational learning for few-shot link prediction in knowledge graphs. arXiv preprint arXiv:1909.01515 (2019)

  2. Cheng, H., Zhou, J.T., Tay, W.P., Wen, B.: Graph neural networks with triple attention for few-shot learning. IEEE Transactions on Multimedia (2023)

    Google Scholar 

  3. Debnath, A.K., de Compadre, R.L.L., Debnath, G., Shusterman, A.J., Hansch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital energies and hydrophobicity. J. Med. Chemis. 34(2), 786–797 (1991)

    Google Scholar 

  4. Ding, K., Zhou, Q., Tong, H., Liu, H.: Few-shot network anomaly detection via cross-network meta-learning. In: Proceedings of the Web Conference 2021, pp. 2448–2456 (2021)

    Google Scholar 

  5. Du, H., Li, D., Wang, W.: Abnormal user detection via multiview graph clustering in the mobile e-commerce network. Wireless Communications and Mobile Computing 2022 (2022)

    Google Scholar 

  6. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  7. Franceschi, L., Niepert, M., Pontil, M., He, X.: Learning discrete structures for graph neural networks. In: International Conference on Machine Learning, pp. 1972–1982. PMLR (2019)

    Google Scholar 

  8. Guo, Q., Zhao, X., Fang, Y., Yang, S., Lin, X., Ouyang, D.: Learning hypersphere for few-shot anomaly detection on attributed networks. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 635–645 (2022)

    Google Scholar 

  9. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  10. Helma, C., King, R.D., Kramer, S., Srinivasan, A.: The Predictive Toxicology Challenge 2000-2001. Bioinformatics 17(1), 107–108 (2001). https://doi.org/10.1093/bioinformatics/17.1.107. http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/17.1.107

  11. Hooi, B., Song, H.A., Beutel, A., Shah, N., Shin, K., Faloutsos, C.: FRAUDAR: bounding graph fraud in the face of camouflage. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 895–904 (2016)

    Google Scholar 

  12. Lee, C.Y., Chen, Y.P.P.: Descriptive prediction of drug side-effects using a hybrid deep learning model. Int. J. Intell. Syst. 36(6), 2491–2510 (2021)

    Article  MathSciNet  Google Scholar 

  13. Loukas, A.: Graph reduction with spectral and cut guarantees. J. Mach. Learn. Res. 20(116), 1–42 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Luo, X., et al.: Deep graph level anomaly detection with contrastive learning. Sci. Rep. 12(1), 19867 (2022)

    Article  Google Scholar 

  15. Ma, R., Pang, G., Chen, L., van den Hengel, A.: Deep graph-level anomaly detection by glocal knowledge distillation. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 704–714 (2022)

    Google Scholar 

  16. Ma, X., et al.: A comprehensive survey on graph anomaly detection with deep learning. IEEE Transactions on Knowledge and Data Engineering (2021)

    Google Scholar 

  17. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999 (2018)

  18. Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 353–362 (2019)

    Google Scholar 

  19. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). https://networkrepository.com/

  20. Wang, H., Zhou, C., Wu, J., Dang, W., Zhu, X., Wang, J.: Deep structure learning for fraud detection. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 567–576. IEEE (2018)

    Google Scholar 

  21. Wang, S., Chen, C., Li, J.: Graph few-shot learning with task-specific structures. arXiv preprint arXiv:2210.12130 (2022)

  22. Wang, S., Dong, Y., Ding, K., Chen, C., Li, J.: Few-shot node classification with extremely weak supervision. arXiv preprint arXiv:2301.02708 (2023)

  23. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: International Conference on Machine Learning, pp. 6861–6871. PMLR (2019)

    Google Scholar 

  24. Xiong, W., Yu, M., Chang, S., Guo, X., Wang, W.Y.: One-shot relational learning for knowledge graphs. arXiv preprint arXiv:1808.09040 (2018)

  25. Yao, H., et al.: Graph few-shot learning via knowledge transfer. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6656–6663 (2020)

    Google Scholar 

  26. Zafarani, R., Abbasi, M.A., Liu, H.: Social media mining: an introduction. Cambridge University Press (2014)

    Google Scholar 

  27. Zhang, G., et al.: Dual-discriminative graph neural network for imbalanced graph-level anomaly detection. Adv. Neural. Inf. Process. Syst. 35, 24144–24157 (2022)

    Google Scholar 

  28. Zhang, Z., Zhao, L.: Unsupervised deep subgraph anomaly detection. In: 2022 IEEE International Conference on Data Mining (ICDM), pp. 753–762. IEEE (2022)

    Google Scholar 

  29. Zhou, F., Cao, C., Zhang, K., Trajcevski, G., Zhong, T., Geng, J.: Meta-GNN: on few-shot node classification in graph meta-learning. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2357–2360 (2019)

    Google Scholar 

  30. Zügner, D., Günnemann, S.: Adversarial attacks on graph neural networks via meta learning (2019)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the Project of Shenzhen Higher Education Stability Support Program (No.20220618160306001) and NSFC program (No. 62272338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minglai Shao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L., Sun, Y., Li, T., Shao, M. (2023). Robust Few-Shot Graph Anomaly Detection via Graph Coarsening. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14117. Springer, Cham. https://doi.org/10.1007/978-3-031-40283-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40283-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40282-1

  • Online ISBN: 978-3-031-40283-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics