Abstract
Accurate human mobility prediction is an essential but critical task in location-based services. Although existing deep learning solutions such as deep recurrent neural networks have remarkable achievements for this task, The diversity of check-in preferences and the sparsity of trajectory representations still prevent us from effectively capturing the richness of human mobility intentions and patterns. To this end, this study introduces a novel Hyperspherical Bayesian learning approach for mobility prediction problem, i.e., HBay. As a generative model, HBay considers multiple contextual semantics underlying check-ins to maximize human diverse preferences and encodes human trajectories in a latent space to mimic complex mobility patterns. In contrast to traditional generative models, HBay operates the latent variables derived from human trajectories in the hyperspherical space to avoid the concern of posterior collapse. In addition, HBay couples with an attentive layer to capture human long-term check-in preferences. The experimental results conducted on four real-world datasets demonstrate our HBay significantly outperforms the state-of-the-art baselines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Atluri, G., Karpatne, A., Kumar, V.: Spatio-temporal data mining: a survey of problems and methods. ACM Comput. Surv. (CSUR) 51(4), 1–41 (2018)
Hamdi, A., et al.: Spatiotemporal data mining: a survey on challenges and open problems. Artif. Intell. Rev. 55, 1441–1488 (2022). https://doi.org/10.1007/s10462-021-09994-y
Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent model with spatial and temporal contexts. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)
Gao, Q., Zhou, F., Trajcevski, G., Zhang, K., Zhong, T., Zhang, F.: Predicting human mobility via variational attention. In: The World Wide Web Conference, pp. 2750–2756 (2019)
Xue, H., Salim, F., Ren, Y., Oliver, N.: MobTCast: Leveraging auxiliary trajectory forecasting for human mobility prediction. Adv. Neural. Inf. Process. Syst. 34, 30380–30391 (2021)
Mathew, W., Raposo, R., Martins, B.: Predicting future locations with hidden Markov models. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 911–918 (2012)
Rudenko, A., Palmieri, L., Herman, M., Kitani, K.M., Gavrila, D.M., Arras, K.O.: Human motion trajectory prediction: a survey. Int. J. Robot. Res. 39(8), 895–935 (2020)
Gambs, S., Killijian, M.-O., del Prado Cortez, M.N.: Next place prediction using mobility Markov chains. In: Proceedings of the 1st Workshop on Measurement, Privacy, and Mobility, pp. 1–6 (2012)
Cheng, C., Yang, H., Lyu, M.R., King, I.: Where you like to go next: successive point-of-interest recommendation. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 2605–2611. AAAI Press (2013)
Feng, J., et al.: DeepMove: predicting human mobility with attentional recurrent networks. In: Proceedings of the 2018 World Wide Web Conference, pp. 1459–1468 (2018)
Long, J., Chen, T., Nguyen, Q.V.H., Yin, H.: Decentralized collaborative learning framework for next poi recommendation. ACM Trans. Inf. Syst. 41(3), 1–25 (2023)
Zhang, L., Sun, Z., Wu, Z., Zhang, J., Ong, Y., Qu, X.: Next point-of-interest recommendation with inferring multi-step future preferences. In: Proceedings of the 31st International Joint Conference on Artificial Intelligence (IJCAI), pp. 3751–3757 (2022)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Cho, K., van Merriënboer Caglar Gulcehre, B., Bahdanau, D., Schwenk, F.B.H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734 (2014)
Luca, M., Barlacchi, G., Lepri, B., Pappalardo, L.: A survey on deep learning for human mobility. ACM Comput. Surv. (CSUR) 55(1), 1–44 (2021)
Huang, L., Ma, Y., Wang, S., Liu, Y.: An attention-based spatiotemporal LSTM network for next poi recommendation. IEEE Trans. Serv. Comput. 14(6), 1585–1597 (2019)
Zhao, S., Chen, X., King, I., Lyu, M.R.: Personalized sequential check-in prediction: beyond geographical and temporal contexts. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2018)
Liao, J., Liu, T., Liu, M., Wang, J., Wang, Y., Sun, H.: Multi-context integrated deep neural network model for next location prediction. IEEE Access 6, 21980–21990 (2018)
Wu, Y., Li, K., Zhao, G., Qian, X.: Long-and short-term preference learning for next poi recommendation. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2301–2304 (2019)
Yuxia, W., Li, K., Zhao, G., Qian, X.: Personalized long-and short-term preference learning for next poi recommendation. IEEE Trans. Knowl. Data Eng. 34(4), 1944–1957 (2020)
Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015 (2015)
Lin, Z., et al.: A structured self-attentive sentence embedding. In: 5th International Conference on Learning Representations, ICLR 2017, Conference Track Proceedings, Toulon, France, 24–26 April 2017. OpenReview.net (2017)
Scott, T.R., Gallagher, A.C., Mozer, M.C.: von Mises-Fisher Loss: an exploration of embedding geometries for supervised learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10612–10622 (2021)
Xu, J., Durrett, G:. Spherical latent spaces for stable variational autoencoders. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4503–4513 (2018)
Wang, P., et al.: Deep adaptive graph clustering via von Mises-Fisher distributions. ACM Trans. Web (2023, accepted). https://doi.org/10.1145/3580521
Mardia, K.V., El-Atoum, S.A.M.: Bayesian inference for the von Mises-Fisher distribution. Biometrika 63(1), 203–206 (1976)
Yang, L., Fan, L., Bouguila, N.: Deep clustering analysis via dual variational autoencoder with spherical latent embeddings. IEEE Trans. Neural Netw. Learn. Syst., 1–10 (2021). https://doi.org/10.1109/TNNLS.2021.3135460
Wood, A.T.A.: Simulation of the von Mises Fisher distribution. Commun. Stat. Simul. Comput. 23(1), 157–164 (1994)
Kong, D., Wu, F.: HST-LSTM: a hierarchical spatial-temporal long-short term memory network for location prediction. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 2341–2347 (2018)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 62102326), the Natural Science Foundation of Sichuan Province (Grant No. 2023NSFSC1411), the Key Research and Development Project of Sichuan Province (Grant No. 2022YFG0314), and Guanghua Talent Project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, L., Liu, K., Liu, C., Gao, Q., Zhou, X., Liu, G. (2023). HBay: Predicting Human Mobility via Hyperspherical Bayesian Learning. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14118. Springer, Cham. https://doi.org/10.1007/978-3-031-40286-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-40286-9_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40285-2
Online ISBN: 978-3-031-40286-9
eBook Packages: Computer ScienceComputer Science (R0)