Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Self-Supervised Learning from Unlabeled IoT Data

  • Chapter
  • First Online:
Artificial Intelligence for Edge Computing

Abstract

With a network architecture selected and before elaborating other inference challenges in a book on Edge AI, it behooves us to consider the question of training neural networks for edge AI applications. Training is a pre-requisite of all that comes next. The key training bottleneck in AI is traditionally the cost of data labeling. Unlabeled data are widely available in the IoT space, but labeling is expensive. This leads to the central question covered in this chapter: how best to exploit the widely-available unlabeled data to reduce labeling cost while improving inference quality? An inspiration for the answer comes from a key recent development in artificial intelligence—the introduction of foundation models for different categories of applications (such as ChatGPT for conversational interfaces, and CLIP for images). The hallmark of foundation models is their ability to learn in an unsupervised fashion (i.e., without an explicit need to label the data). While many approaches were proposed for training foundation models, two of the most important ones are (1) contrastive learning, and (2) masking. Briefly, contrastive learning teaches the model a notion of semantic similarity by presenting it with similar data samples (e.g., an image and its rotation) and contrasting those with randomly chosen samples. Masking forces the model to extract high-level semantic structure from data by masking parts of the input and asking the model to reproduce it from the remaining (unmasked) data. Pretraining a model using either approach allows it to leverage large amounts of unlabeled data. How do these two techniques transfer to the IoT domain and how effective are they at reducing the need for data labeling? The chapter answers these questions from recent work on contrastive learning and masked auto-encoding for the IoT domain that can be thought of as a precursor of the emergence of foundation models for IoT applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 97.19
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT

  2. 2.

    https://en.wikipedia.org/wiki/Convolution_theorem

  3. 3.

    https://seaindia.in/sea-online-journal/human-voice-frequency-range/

  4. 4.

    https://raspberryshake.org/

  5. 5.

    https://medium.com/whattolabel/data-labeling-ais-human-bottleneck-24bd10136e52

References

  1. N. Bui, A. Nguyen, P. Nguyen, H. Truong, A. Ashok, T. Dinh, R. Deterding, T. Vu, Pho2: smartphone based blood oxygen level measurement systems using near-ir and red wave-guided light, in Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems (2017), pp. 1–14

    Google Scholar 

  2. J.M. Sorber, M. Shin, R. Peterson, D. Kotz, Plug-n-trust: practical trusted sensing for mhealth, in Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (2012), pp. 309–322

    Google Scholar 

  3. Y. Xiang, R. Piedrahita, R.P. Dick, M. Hannigan, Q. Lv, L. Shang, A hybrid sensor system for indoor air quality monitoring, in 2013 IEEE International Conference on Distributed Computing in Sensor Systems (IEEE, 2013), pp. 96–104

    Google Scholar 

  4. A. Saeed, T. Ozcelebi, J. Lukkien, Multi-task self-supervised learning for human activity detection. Proc. ACM Interactive Mobile Wearable Ubiquit. Technol. 3(2), 1–30 (2019)

    Article  Google Scholar 

  5. C.I. Tang, I. Perez-Pozuelo, D. Spathis, C. Mascolo, Exploring contrastive learning in human activity recognition for healthcare. Preprint (2020). arXiv:2011.11542

    Google Scholar 

  6. H. Haresamudram, A. Beedu, V. Agrawal, P.L. Grady, I. Essa, J. Hoffman, T. Plötz, Masked reconstruction based self-supervision for human activity recognition, in Proceedings of the 2020 International Symposium on Wearable Computers (2020), pp. 45–49

    Google Scholar 

  7. E. Hoque, R.F. Dickerson, J.A. Stankovic, Vocal-diary: a voice command based ground truth collection system for activity recognition, in Proceedings of the Wireless Health 2014 on National Institutes of Health (2014), pp. 1–6

    Google Scholar 

  8. L. Capra, W. Emmerich, C. Mascolo, Carisma: context-aware reflective middleware system for mobile applications. IEEE Trans. Software Eng. 29(10), 929–945 (2003)

    Article  Google Scholar 

  9. S. Nirjon, R.F. Dickerson, Q. Li, P. Asare, J.A. Stankovic, D. Hong, B. Zhang, X. Jiang, G. Shen, F. Zhao, Musicalheart: a hearty way of listening to music, in Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems (2012), pp. 43–56

    Google Scholar 

  10. A. Rowe, M. Berges, R. Rajkumar, Contactless sensing of appliance state transitions through variations in electromagnetic fields, in Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building (2010), pp. 19–24

    Google Scholar 

  11. C.-Y. Li, Y.-C. Chen, W.-J. Chen, P. Huang, H.-H. Chu, Sensor-embedded teeth for oral activity recognition, in Proceedings of the 2013 International Symposium on Wearable Computers (2013), pp. 41–44

    Google Scholar 

  12. E. Cho, K. Wong, O. Gnawali, M. Wicke, L. Guibas, Inferring mobile trajectories using a network of binary proximity sensors, in 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (IEEE, 2011), pp. 188–196

    Google Scholar 

  13. B. Kusy, A. Ledeczi, X. Koutsoukos, Tracking mobile nodes using rf doppler shifts, in Proceedings of the 5th International Conference on Embedded Networked Sensor Systems (2007), pp. 29–42

    Google Scholar 

  14. J. Powar, C. Gao, R. Harle, Assessing the impact of multi-channel ble beacons on fingerprint-based positioning, in 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN) (IEEE, 2017), pp. 1–8

    Google Scholar 

  15. P. Lazik, N. Rajagopal, O. Shih, B. Sinopoli, A. Rowe, Alps: a bluetooth and ultrasound platform for mapping and localization, in Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems (2015), pp. 73–84

    Google Scholar 

  16. K. Langendoen, N. Reijers, Distributed localization in wireless sensor networks: a quantitative comparison. Comput. Netw. 43(4), 499–518 (2003)

    Article  Google Scholar 

  17. M. Mirshekari, S. Pan, P. Zhang, H.Y. Noh, Characterizing wave propagation to improve indoor step-level person localization using floor vibration, in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2016, vol. 9803 (SPIE, 2016), pp. 30–40

    Google Scholar 

  18. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  19. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: a large-scale hierarchical image database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2009), pp. 248–255

    Google Scholar 

  20. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems (2012), pp. 1097–1105

    Google Scholar 

  21. J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 779–788

    Google Scholar 

  22. Z.-Q. Zhao, P. Zheng, S.-T. Xu, X. Wu, Object detection with deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3212–3232 (2019)

    Article  Google Scholar 

  23. J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: pre-training of deep bidirectional transformers for language understanding. Preprint (2018). arXiv:1810.04805

    Google Scholar 

  24. S. Suthaharan, Support vector machine, in Machine Learning Models and Algorithms for Big Data Classification (Springer, Berlin, 2016), pp. 207–235

    Google Scholar 

  25. n.d. Lane, P. Georgiev, L. Qendro, Deepear: robust smartphone audio sensing in unconstrained acoustic environments using deep learning, in Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (2015), pp. 283–294

    Google Scholar 

  26. T. Wang, S. Yao, S. Liu, J. Li, D. Liu, H. Shao, R. Wang, T. Abdelzaher, Audio keyword reconstruction from on-device motion sensor signals via neural frequency unfolding. Proc. ACM Interactive Mobile Wearable Ubiquit. Technol. 5(3), 1–29 (2021)

    Google Scholar 

  27. A.A. Hammam, M.M. Soliman, A.E. Hassanein, Deeppet: a pet animal tracking system in internet of things using deep neural networks, in 2018 13th International Conference on Computer Engineering and Systems (ICCES) (IEEE, 2018), pp. 38–43

    Google Scholar 

  28. B. El Boudani, L. Kanaris, A. Kokkinis, M. Kyriacou, C. Chrysoulas, S. Stavrou, T. Dagiuklas, Implementing deep learning techniques in 5g iot networks for 3d indoor positioning: delta (deep learning-based co-operative architecture). Sensors 20(19), 5495 (2020)

    Google Scholar 

  29. D. Liu, T. Abdelzaher, Semi-supervised contrastive learning for human activity recognition, in 2021 17th International Conference on Distributed Computing in Sensor Systems (DCOSS) (IEEE, 2021), pp. 45–53

    Google Scholar 

  30. D. Liu, T. Wang, S. Liu, R. Wang, S. Yao, T. Abdelzaher, Contrastive self-supervised representation learning for sensing signals from the time-frequency perspective, in 2021 International Conference on Computer Communications and Networks (ICCCN) (IEEE, 2021), pp. 1–10

    Google Scholar 

  31. S. Gidaris, P. Singh, N. Komodakis, Unsupervised representation learning by predicting image rotations. Preprint (2018). arXiv:1803.07728

    Google Scholar 

  32. R. Zhang, P. Isola, A.A. Efros, Colorful image colorization, in European Conference on Computer Vision (Springer, 2016), pp. 649–666

    Google Scholar 

  33. D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, A.A. Efros, Context encoders: feature learning by inpainting, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 2536–2544

    Google Scholar 

  34. T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A simple framework for contrastive learning of visual representations. Preprint (2020). arXiv:2002.05709

    Google Scholar 

  35. W. Su, X. Zhu, Y. Cao, B. Li, L. Lu, F. Wei, J. Dai, Vl-bert: pre-training of generic visual-linguistic representations. Preprint (2019). arXiv:1908.08530

    Google Scholar 

  36. T.J. O’shea, N. West, Radio machine learning dataset generation with gnu radio, in Proceedings of the GNU Radio Conference, vol. 1, no. 1 (2016)

    Google Scholar 

  37. S. Yao, A. Piao, W. Jiang, Y. Zhao, H. Shao, S. Liu, D. Liu, J. Li, T. Wang, S. Hu et al., Stfnets: learning sensing signals from the time-frequency perspective with short-time fourier neural networks, in The World Wide Web Conference (2019), pp. 2192–2202

    Google Scholar 

  38. P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, D. Krishnan, Supervised contrastive learning. Preprint (2020), arXiv:2004.11362

    Google Scholar 

  39. K. He, X. Chen, S. Xie, Y. Li, P. DollĂ¡r, R. Girshick, Masked autoencoders are scalable vision learners. Preprint (2021), arXiv:2111.06377

    Google Scholar 

  40. C. Long, K. Chugg, A. Polydoros, Further results in likelihood classification of qam signals, in Proceedings of MILCOM’94 (IEEE, 1994), pp. 57–61

    Google Scholar 

  41. N.E. Lay, A. Polydoros, Modulation classification of signals in unknown isi environments, in Proceedings of MILCOM’95, vol. 1 (IEEE, 1995), pp. 170–174

    Google Scholar 

  42. O.A. Dobre, A. Abdi, Y. Bar-Ness, W. Su, The classification of joint analog and digital modulations, in MILCOM 2005–2005 IEEE Military Communications Conference (IEEE, 2005), pp. 3010–3015

    Google Scholar 

  43. K. Ho, W. Prokopiw, Y. Chan, Modulation identification of digital signals by the wavelet transform. IEE Proceedings-Radar, Sonar and Navigation, vol. 147, no. 4 (2000), pp. 169–176

    Article  Google Scholar 

  44. S. Huang, Y. Yao, Z. Wei, Z. Feng, P. Zhang, Automatic modulation classification of overlapped sources using multiple cumulants. IEEE Transa. Veh. Technol. 66(7) (2016)

    Google Scholar 

  45. T.J. O’Shea, J. Corgan, T.C. Clancy, Convolutional radio modulation recognition networks, in International Conference on Engineering Applications of Neural Networks (Springer, 2016), pp. 213–226

    Google Scholar 

  46. T.J. O’Shea, T. Roy, T.C. Clancy, Over-the-air deep learning based radio signal classification. IEEE J. Sel. Top. Signal Process. 12(1), 168–179 (2018)

    Article  Google Scholar 

  47. S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, S. Pollin, Deep learning models for wireless signal classification with distributed low-cost spectrum sensors. IEEE Trans. Cognitive Commun. Netw. 4(3), 433–445 (2018)

    Article  Google Scholar 

  48. J. Xu, C. Luo, G. Parr, Y. Luo, A spatiotemporal multi-channel learning framework for automatic modulation recognition. IEEE Wirel. Commun. Lett. 9(10), 1629–1632 (2020)

    Article  Google Scholar 

  49. L. Huang, W. Pan, Y. Zhang, L. Qian, N. Gao, Y. Wu, Data augmentation for deep learning-based radio modulation classification. IEEE Access 8, 1498–1506 (2019)

    Article  Google Scholar 

  50. Q. Zheng, P. Zhao, Y. Li, H. Wang, Y. Yang, Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification. Neural Comput. Appl. 1–23 (2020)

    Google Scholar 

  51. P. Wang, M. Vindiola, Data augmentation for blind signal classification, in MILCOM 2019–2019 IEEE Military Communications Conference (MILCOM) (IEEE, 2019), pp. 305–310

    Google Scholar 

  52. D. Liu, P. Wang, T. Wang, T. Abdelzaher, Self-contrastive learning based semi-supervised radio modulation classification, in MILCOM 2021–2021 IEEE Military Communications Conference (MILCOM) (IEEE, 2021), pp. 777–782

    Google Scholar 

  53. K. Sohn, Improved deep metric learning with multi-class n-pair loss objective, in Proceedings of the 30th International Conference on Neural Information Processing Systems (2016), pp. 1857–1865

    Google Scholar 

  54. S. Yao, S. Hu, Y. Zhao, A. Zhang, T. Abdelzaher, Deepsense: a unified deep learning framework for time-series mobile sensing data processing, in Proceedings of the 26th International Conference on World Wide Web (2017), pp. 351–360

    Google Scholar 

  55. S. Yao, Y. Zhao, A. Zhang, L. Su, T. Abdelzaher, Deepiot: Compressing deep neural network structures for sensing systems with a compressor-critic framework, in Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems (2017), pp. 1–14

    Google Scholar 

  56. X. Li, S. Liu, S. De Mello, X. Wang, J. Kautz, M.-H. Yang, Joint-task self-supervised learning for temporal correspondence, in Advances in Neural Information Processing Systems (2019), pp. 318–328

    Google Scholar 

  57. R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa, Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(ARTICLE), 2493–2537 (2011)

    Google Scholar 

  58. Z. Li, Z. Xiao, B. Wang, B.Y. Zhao, H. Zheng, Scaling deep learning models for spectrum anomaly detection, in Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing (2019), 291–300

    Google Scholar 

  59. D.C. Mohr, M. Zhang, S.M. Schueller, Personal sensing: understanding mental health using ubiquitous sensors and machine learning. Ann. Rev. Clin. Psychol. 13, 23–47 (2017)

    Article  Google Scholar 

  60. K. Han, D. Yu, I. Tashev, Speech emotion recognition using deep neural network and extreme learning machine, in Fifteenth Annual Conference of the International Speech Communication Association (2014)

    Google Scholar 

  61. Y. Guan, T. Plötz, Ensembles of deep lstm learners for activity recognition using wearables. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies1(2), 1–28 (2017)

    Article  Google Scholar 

  62. L. Peng, L. Chen, Z. Ye, Y. Zhang, Aroma: a deep multi-task learning based simple and complex human activity recognition method using wearable sensors. Proc. ACM Interactive Mobile Wearable Ubiquit. Technol. 2(2), 1–16 (2018)

    Article  Google Scholar 

  63. V. Radu, C. Tong, S. Bhattacharya, n.d. Lane, C. Mascolo, M.K. Marina, F. Kawsar, Multimodal deep learning for activity and context recognition. Proc. ACM Interactive Mobile Wearable Ubiquit. Technol. 1(4), 1–27 (2018)

    Google Scholar 

  64. S. Bhattacharya, n.d. Lane, Sparsification and separation of deep learning layers for constrained resource inference on wearables, in Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM (2016), pp. 176–189

    Google Scholar 

  65. S. Yao, Y. Zhao, H. Shao, S. Liu, D. Liu, L. Su, T. Abdelzaher, Fastdeepiot: towards understanding and optimizing neural network execution time on mobile and embedded devices, in Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems (2018), pp. 278–291

    Google Scholar 

  66. M. Noroozi, P. Favaro, Unsupervised learning of visual representations by solving jigsaw puzzles, in European Conference on Computer Vision (Springer, 2016), pp. 69–84

    Google Scholar 

  67. P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in Proceedings of the 25th International Conference on Machine Learning (2008), pp. 1096–1103

    Google Scholar 

  68. T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space. Preprint (2013). arXiv:1301.3781

    Google Scholar 

  69. G. Zhong, L.-N. Wang, X. Ling, J. Dong, An overview on data representation learning: from traditional feature learning to recent deep learning. J. Finance Data Sci. 2(4), 265–278 (2016)

    Article  Google Scholar 

  70. Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  71. K. Pearson, Liii. on lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    Google Scholar 

  72. R.A. Fisher, The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Article  Google Scholar 

  73. S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  74. C. Doersch, A. Gupta, A.A. Efros, Unsupervised visual representation learning by context prediction, in Proceedings of the IEEE International Conference on Computer Vision (2015), pp. 1422–1430

    Google Scholar 

  75. Y. Yao, C. Liu, D. Luo, Y. Zhou, Q. Ye, Video playback rate perception for self-supervised spatio-temporal representation learning, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 6548–6557

    Google Scholar 

  76. J. Wang, J. Jiao, L. Bao, S. He, Y. Liu, W. Liu, Self-supervised spatio-temporal representation learning for videos by predicting motion and appearance statistics, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019), pp. 4006–4015

    Google Scholar 

  77. T. Han, W. Xie, A. Zisserman, Self-supervised co-training for video representation learning. Preprint (2020). arXiv:2010.09709

    Google Scholar 

  78. P. Morgado, N. Vasconcelos, T. Langlois, O. Wang, Self-supervised generation of spatial audio for 360 video. Preprint (2018). arXiv:1809.02587

    Google Scholar 

  79. B. Korbar, D. Tran, L. Torresani, Cooperative learning of audio and video models from self-supervised synchronization. Preprint (2018). arXiv:1807.00230

    Google Scholar 

  80. L. Kong, C.D.M. d’Autume, W. Ling, L. Yu, Z. Dai, D. Yogatama, A mutual information maximization perspective of language representation learning. Preprint (2019). arXiv:1910.08350

    Google Scholar 

  81. J.O. Smith, Mathematics of the Discrete Fourier Transform (DFT): With Audio Applications (Julius Smith, Stanford, 2007)

    Google Scholar 

  82. F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions. Preprint (2015). arXiv:1511.07122

    Google Scholar 

  83. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778

    Google Scholar 

  84. O. Steven Eyobu, D.S. Han, Feature representation and data augmentation for human activity classification based on wearable imu sensor data using a deep lstm neural network. Sensors 18(9), 2892 (2018)

    Google Scholar 

  85. J. Gao, X. Song, Q. Wen, P. Wang, L. Sun, H. Xu, Robusttad: robust time series anomaly detection via decomposition and convolutional neural networks. Preprint (2020). arXiv:2002.09545

    Google Scholar 

  86. A. Stisen, H. Blunck, S. Bhattacharya, T.S. Prentow, M.B. Kjærgaard, A. Dey, T. Sonne, M.M. Jensen, Smart devices are different: assessing and mitigatingmobile sensing heterogeneities for activity recognition, in Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems (2015), pp. 127–140

    Google Scholar 

  87. C. Chatzaki, M. Pediaditis, G. Vavoulas, M. Tsiknakis, Human daily activity and fall recognition using a smartphone’s acceleration sensor, in International Conference on Information and Communication Technologies for Ageing Well and e-Health (Springer, 2016), pp. 100–118

    Google Scholar 

  88. M. Malekzadeh, R.G. Clegg, A. Cavallaro, H. Haddadi, Protecting sensory data against sensitive inferences, in Proceedings of the 1st Workshop on Privacy by Design in Distributed Systems (2018), pp. 1–6

    Google Scholar 

  89. D. Anguita, A. Ghio, L. Oneto, X. Parra, J.L. Reyes-Ortiz, A public domain dataset for human activity recognition using smartphones, in Esann, vol. 3 (2013), p. 3

    Google Scholar 

  90. J.R. Kwapisz, G.M. Weiss, S.A. Moore, Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newsl. 12(2), 74–82 (2011)

    Article  Google Scholar 

  91. W. Jiang, C. Miao, F. Ma, S. Yao, Y. Wang, Y. Yuan, H. Xue, C. Song, X. Ma, D. Koutsonikolas et al., Towards environment independent device free human activity recognition, in Proceedings of the 24th Annual International Conference on Mobile Computing and Networking (2018), pp. 289–304

    Google Scholar 

  92. D.P. Kingma, J. Ba, Adam: a method for stochastic optimization. Preprint (2014). arXiv:1412.6980

    Google Scholar 

  93. L. Van der Maaten, G. Hinton, Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  94. J.S. Bauer, S. Consolvo, B. Greenstein, J. Schooler, E. Wu, N.F. Watson, J. Kientz, Shuteye: encouraging awareness of healthy sleep recommendations with a mobile, peripheral display, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2012), pp. 1401–1410

    Google Scholar 

  95. F.R. Bentley, Y.-Y. Chen, C. Holz, Reducing the stress of coordination: sharing travel time information between contacts on mobile phones, in Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (2015), pp. 967–970

    Google Scholar 

  96. M. Faurholt-Jepsen, M. Vinberg, M. Frost, S. Debel, E. Margrethe Christensen, J.E. Bardram, L.V. Kessing, Behavioral activities collected through smartphones and the association with illness activity in bipolar disorder. Int. J. Methods Psychiatric Res. 25(4), 309–323 (2016)

    Article  Google Scholar 

  97. H. Zou, Z. Chen, H. Jiang, L. Xie, C. Spanos, Accurate indoor localization and tracking using mobile phone inertial sensors, wifi and ibeacon, in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (IEEE, 2017), pp. 1–4

    Google Scholar 

  98. E. Martin, O. Vinyals, G. Friedland, R. Bajcsy, Precise indoor localization using smart phones, in Proceedings of the 18th ACM International Conference on Multimedia (2010), pp. 787–790

    Google Scholar 

  99. N.Y. Hammerla, S. Halloran, T. Plötz, Deep, convolutional, and recurrent models for human activity recognition using wearables. Preprint (2016). arXiv:1604.08880

    Google Scholar 

  100. F.J.O. Morales, D. Roggen, Deep convolutional feature transfer across mobile activity recognition domains, sensor modalities and locations, in Proceedings of the 2016 ACM International Symposium on Wearable Computers (2016), pp. 92–99

    Google Scholar 

  101. J. Wang, Y. Chen, S. Hao, X. Peng, L. Hu, Deep learning for sensor-based activity recognition: a survey. Pattern Recognit. Lett. 119, 3–11 (2019)

    Article  Google Scholar 

  102. C.I. Tang, I. Perez-Pozuelo, D. Spathis, S. Brage, N. Wareham, C. Mascolo, Selfhar: improving human activity recognition through self-training with unlabeled data. Preprint (2021). arXiv:2102.06073

    Google Scholar 

  103. I. Misra, L.V.D. Maaten, Self-supervised learning of pretext-invariant representations, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 6707–6717

    Google Scholar 

  104. R. Qian, T. Meng, B. Gong, M.-H. Yang, H. Wang, S. Belongie, Y. Cui, Spatiotemporal contrastive video representation learning. Preprint (2020). arXiv:2008.03800

    Google Scholar 

  105. D. Jiang, W. Li, M. Cao, R. Zhang, W. Zou, K. Han, X. Li, Speech simclr: combining contrastive and reconstruction objective for self-supervised speech representation learning. Preprint (2020). arXiv:2010.13991

    Google Scholar 

  106. G. Jin, B. Ye, Y. Wu, F. Qu, Vehicle classification based on seismic signatures using convolutional neural network. IEEE Geosci. Remote Sensing Lett. 16(4), 628–632 (2018)

    Article  Google Scholar 

  107. G.P. Mazarakis, J.N. Avaritsiotis, Vehicle classification in sensor networks using time-domain signal processing and neural networks. Microprocess. Microsyst. 31(6), 381–392 (2007)

    Article  Google Scholar 

  108. M. Kim, J. Tack, S.J. Hwang, Adversarial self-supervised contrastive learning. Adv. Neural Inf. Process. Syst. 33, 2983–2994 (2020)

    Google Scholar 

  109. E.K. Antonsson, R.W. Mann, The frequency content of gait. J. Biomech. 18(1), 39–47 (1985)

    Article  Google Scholar 

  110. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., An image is worth 16x16 words: transformers for image recognition at scale. Preprint (2020). arXiv:2010.11929

    Google Scholar 

  111. I. Loshchilov, F. Hutter, Decoupled weight decay regularization. Preprint (2017). arXiv:1711.05101

    Google Scholar 

  112. A.B. Assessment, C.P. Brief, US military investments in autonomy and AI (2020)

    Google Scholar 

  113. S. Petrella, C. Miller, B. Cooper, Russia’s artificial intelligence strategy: the role of state-owned firms. Orbis 65(1), 75–100 (2021)

    Article  Google Scholar 

  114. M.C. Horowitz, Artificial intelligence, international competition, and the balance of power. Texas Natl. Security Rev. 22 (2018)

    Google Scholar 

  115. J.F. Antal, 7 Seconds to Die: A Military Analysis of the Second Nagorno-Karabakh War and the Future of Warfighting (Casemate, Philadelphia, 2022)

    Google Scholar 

  116. T. Abdelzaher, A. Taliaferro, P. Sullivan, S. Russell, The multi-domain operations effect loop: from future concepts to research challenges, in Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications II, vol. 11413 (International Society for Optics and Photonics, Bellingham, 2020), p. 1141304

    Google Scholar 

  117. S. Russell, T. Abdelzaher, N. Suri, Multi-domain effects and the internet of battlefield things, in MILCOM 2019–2019 IEEE Military Communications Conference (MILCOM) (IEEE, 2019), pp. 724–730

    Google Scholar 

  118. S. Russell, T. Abdelzaher, The internet of battlefield things: the next generation of command, control, communications and intelligence (c3i) decision-making, in MILCOM 2018–2018 IEEE Military Communications Conference (MILCOM) (IEEE, 2018), pp. 737–742

    Google Scholar 

  119. T. Abdelzaher, N. Ayanian, T. Basar, S. Diggavi, J. Diesner, D. Ganesan, R. Govindan, S. Jha, T. Lepoint, B. Marlin et al., Toward an internet of battlefield things: a resilience perspective. Computer 51(11), 24–36 (2018)

    Article  Google Scholar 

  120. S. Liu, S. Yao, Y. Huang, D. Liu, H. Shao, Y. Zhao, J. Li, T. Wang, R. Wang, C. Yang et al., Handling missing sensors in topology-aware iot applications with gated graph neural network. Proc. ACM Interactive Mobile Wearable Ubiquit. Technol. 4(3), 1–31 (2020)

    Article  Google Scholar 

  121. T. Abdelzaher, N. Ayanian, T. Basar, S. Diggavi, J. Diesner, D. Ganesan, R. Govindan, S. Jha, T. Lepoint, B. Marlin et al., Will distributed computing revolutionize peace? the emergence of battlefield IoT, in 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS) (IEEE, 2018), pp. 1129–1138

    Google Scholar 

  122. A.D. Cobb, B.A. Jalaian, n.d. Bastian, S. Russell, Robust decision-making in the internet of battlefield things using bayesian neural networks, in 2021 Winter Simulation Conference (WSC) (IEEE, 2021), pp. 1–12

    Google Scholar 

  123. B.M. Marlin, T. Abdelzaher, G. Ciocarlie, A.D. Cobb, M. Dennison, B. Jalaian, L. Kaplan, T. Raber, A. Raglin, P.K. Sharma et al., On uncertainty and robustness in large-scale intelligent data fusion systems, in 2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI) (IEEE, 2020), pp. 82–91

    Google Scholar 

  124. E. Blasch, T. Pham, C.-Y. Chong, W. Koch, H. Leung, D. Braines, T. Abdelzaher, Machine learning/artificial intelligence for sensor data fusion–opportunities and challenges. IEEE Aerospace Electron. Syst. Mag. 36(7), 80–93 (2021)

    Article  Google Scholar 

  125. S. Liu, S. Yao, J. Li, D. Liu, T. Wang, H. Shao, T. Abdelzaher, Giobalfusion: a global attentional deep learning framework for multisensor information fusion. Proc. ACM Interactive Mobile Wearable Ubiquit. Technol. 4(1), 1–27 (2020)

    Article  Google Scholar 

  126. S. Yao, Y. Zhao, H. Shao, D. Liu, S. Liu, Y. Hao, A. Piao, S. Hu, S. Lu, T.F. Abdelzaher, Sadeepsense: self-attention deep learning framework for heterogeneous on-device sensors in internet of things applications, in IEEE INFOCOM 2019-IEEE Conference on Computer Communications (IEEE, 2019), pp. 1243–1251

    Google Scholar 

  127. J. Huang, C. Samplawski, D. Ganesan, B. Marlin, H. Kwon, Clio: enabling automatic compilation of deep learning pipelines across iot and cloud, in Proceedings of the 26th Annual International Conference on Mobile Computing and Networking (2020), pp. 1–12

    Google Scholar 

  128. T. Li, J. Huang, E. Risinger, D. Ganesan, Low-latency speculative inference on distributed multi-modal data streams, in Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services (2021), pp. 67–80

    Google Scholar 

  129. D. Basu, D. Data, C. Karakus, S. Diggavi, Qsparse-local-sgd: distributed sgd with quantization, sparsification and local computations. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  130. S. Yao, Y. Hao, Y. Zhao, A. Piao, H. Shao, D. Liu, S. Liu, S. Hu, D. Weerakoon, K. Jayarajah et al., Eugene: towards deep intelligence as a service, in 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS) (IEEE, 2019), pp. 1630–1640

    Google Scholar 

  131. S. Yao, Y. Zhao, A. Zhang, S. Hu, H. Shao, C. Zhang, L. Su, T. Abdelzaher, Deep learning for the internet of things. Computer 51(5), 32–41 (2018)

    Article  Google Scholar 

  132. T. Abdelzaher, Y. Hao, K. Jayarajah, A. Misra, P. Skarin, S. Yao, D. Weerakoon, K.-E. Årzén, Five challenges in cloud-enabled intelligence and control. ACM Trans. Internet Technol. (TOIT) 20(1), 1–19 (2020)

    Google Scholar 

  133. S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, T. Abdelzaher, Deep compressive offloading: speeding up neural network inference by trading edge computation for network latency, in Proceedings of the International Conference on Embedded Networked Sensor Systems (SenSys) (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, D., Abdelzaher, T. (2023). Self-Supervised Learning from Unlabeled IoT Data. In: Srivatsa, M., Abdelzaher, T., He, T. (eds) Artificial Intelligence for Edge Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-40787-1_2

Download citation

Publish with us

Policies and ethics