Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Fuzzy-Based Error Driving System: Effect of Non Performance Error for Improving Driving Performance in VANETs

  • Conference paper
  • First Online:
Advances in Networked-based Information Systems (NBiS 2023)

Abstract

In this work, we focus on the major cause of car accidents - driver errors, which include recognition, decision, performance and non-performance errors. Non-performance errors are critical for assessing driver’s error because they involve situations where the driver fails to take any action to keep the vehicle on the road or avoid an accident, such as falling asleep at the wheel. To assess driver decisions in real-time, we propose a fuzzy logic system that calculates the Driver’s Error Value (DEV). We demonstrate the impact of each parameter and suggest preventive measures to avoid accidents when the driver’s error value is high. Our system is implemented in vehicles in a Vehicular Ad hoc Network (VANET) environment, where real-time information exchange enables drivers to be alerted of potential dangerous situations based on the DEV output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Heety, O.S., Zakaria, Z., Ismail, M., Shakir, M.M., Alani, S., Alsariera, H.: A comprehensive survey: benefits, services, recent works, challenges, security, and use cases for SDN-VANET. IEEE Access 8, 91028–91047 (2020)

    Article  Google Scholar 

  2. Bojadziev, G., Bojadziev, M., Zadeh, L.A.: Fuzzy Logic for Business, Finance, and Management, Advances in Fuzzy Systems - Applications and Theory, vol. 12. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  3. Bylykbashi, K., Qafzezi, E., Ampririt, P., Ikeda, M., Matsuo, K., Barolli, L.: A fuzzy-based system for safe driving in VANETs considering impact of driver impatience on stress feeling level. In: Barolli, L., Kulla, E., Ikeda, M. (eds.) EIDWT 2022. LNCS, vol. 118, pp. 236–244. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95903-6_25

    Chapter  Google Scholar 

  4. Hartenstein, H., Laberteaux, K.P. (eds.): VANET: Vehicular Applications and Inter-Networking Technologies. Intelligent transportation systems. Wiley (2010). https://doi.org/10.1002/9780470740637

  5. Hartenstein, H., Laberteaux, L.: A tutorial survey on vehicular ad hoc networks. IEEE Commun. Mag. 46(6), 164–171 (2008)

    Article  Google Scholar 

  6. Hussein, A., Elhajj, I.H., Chehab, A., Kayssi, A.: SDN VANETs in 5G: An architecture for resilient security services. In: 2017 Fourth International Conference on Software Defined Systems (SDS), pp. 67–74 (2017)

    Google Scholar 

  7. Kandel, A.: Fuzzy Expert Systems. CRC Press Inc, Boca Raton (1992)

    Google Scholar 

  8. Klir, G.J., Folger, T.A.: Fuzzy sets, uncertainty, and information. Prentice Hall, Upper Saddle River (1988)

    MATH  Google Scholar 

  9. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic - Theory and Applications. Prentice Hall, Hoboken (1995)

    MATH  Google Scholar 

  10. McNeill, F.M., Thro, E.: Fuzzy Logic: A Practical Approach. Academic Press Professional Inc, San Diego (1994)

    MATH  Google Scholar 

  11. Munakata, T., Jani, Y.: Fuzzy systems: an overview. Commun. ACM 37(3), 69–77 (1994)

    Article  Google Scholar 

  12. Peixoto, M.L.M., et al.: FogJam: a fog service for detecting traffic congestion in a continuous data stream VANET. Ad Hoc Netw. 140, 103046 (2023). https://doi.org/10.1016/j.adhoc.2022.103046

  13. Qafzezi, E., Bylykbashi, K., Higashi, S., Ampririt, P., Matsuo, K., Barolli, L.: A fuzzy-based error driving system for improving driving performance in VANETs. In: Barolli, L. (ed.) CISIS 2023. LNCS, vol. 176, pp. 1–9. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35734-3_16

    Chapter  Google Scholar 

  14. Sadio, O., Ngom, I., Lishou, C.: SDN architecture for intelligent vehicular sensors networks. In: 2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation (UKSim), pp. 139–144 (2018)

    Google Scholar 

  15. Schünemann, B., Massow, K., Radusch, I.: Realistic simulation of vehicular communication and vehicle-2-x applications. In: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, SimuTools 2008, Marseille, France, March 3-7, 2008, p. 62. ICST/ACM (2008). https://doi.org/10.4108/ICST.SIMUTOOLS2008.2949

  16. Zadeh, L.A., Kacprzyk, J.: Fuzzy Logic for the Management of Uncertainty. Wiley, New York (1992)

    Google Scholar 

  17. Zadeh, L.A., Klir, G.J., Yuan, B.: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems - Selected Papers by Lotfi A Zadeh, Advances in Fuzzy Systems - Applications and Theory, vol. 6. World Scientific, Singapore (1996). https://doi.org/10.1142/2895

  18. Zimmermann, H.J.: Fuzzy control. In: Fuzzy Set Theory and Its Applications, pp. 203–240. Springer, Dordrecht (1996). https://doi.org/10.1007/978-94-015-8702-0_11

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ermioni Qafzezi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qafzezi, E., Bylykbashi, K., Higashi, S., Ampririt, P., Matsuo, K., Barolli, L. (2023). A Fuzzy-Based Error Driving System: Effect of Non Performance Error for Improving Driving Performance in VANETs. In: Barolli, L. (eds) Advances in Networked-based Information Systems. NBiS 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-031-40978-3_2

Download citation

Publish with us

Policies and ethics