Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Survey and Approach to Chart Classification

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2023 Workshops (ICDAR 2023)

Abstract

Charts represent an essential source of visual information in documents and facilitate a deep understanding and interpretation of information typically conveyed numerically. In the scientific literature, there are many charts, each with its stylistic differences. Recently the document understanding community has begun to address the problem of automatic chart understanding, which begins with chart classification. In this paper, we present a survey of the current state-of-the-art techniques for chart classification and discuss the available datasets and their supported chart types. We broadly classify these contributions as traditional approaches based on ML, CNN, and Transformers.

Furthermore, we carry out an extensive comparative performance analysis of CNN-based and transformer-based approaches on the recently published CHARTINFO UB-UNITECH PMC dataset for the CHART-Infographics competition at ICPR 2022. The data set includes 15 different chart categories, including 22,923 training images and 13,260 test images. We have implemented a vision-based transformer model that produces state-of-the-art results in chart classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.ncbi.nlm.nih.gov/pmc/.

References

  1. Amara, J., et al.: Convolutional neural network based chart image classification. In: International Conference in Central Europe on Computer Graphics, Visualization, and Computer Vision (2017)

    Google Scholar 

  2. Araújo, T., et al.: A real-world approach on the problem of chart recognition using classification, detection, and perspective correction. Sensors 20(16), 4370 (2020)

    Article  Google Scholar 

  3. Bajić, F., et al.: Data visualization classification using simple convolutional neural network model. Int. J. Electr. Comput. Eng. Syst. (IJECES) 11(1), 43–51 (2020)

    Google Scholar 

  4. Bajić, F., Job, J.: Chart classification using siamese CNN. J. Imaging. 7, 220 (2021)

    Article  Google Scholar 

  5. Balaji, A., et al.: Chart-text: a fully automated chart image descriptor. ArXiv (2018)

    Google Scholar 

  6. Chagas, P., et al.: Evaluation of convolutional neural network architectures for chart image classification. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2018)

    Google Scholar 

  7. Cheng, B., et al.: Graphical chart classification using data fusion for integrating text and image features. In: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR (2013)

    Google Scholar 

  8. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  9. Dai, W., et al.: Chart decoder: generating textual and numeric information from chart images automatically. J. Vis. Lang. Comput. 48, 101–109 (2018)

    Article  Google Scholar 

  10. Davila, K., et al.: ICDAR competition on harvesting raw tables from infographics (CHART-infographics). In: International Conference on Document Analysis and Recognition (ICDAR), pp. 1594–1599. IEEE, Sydney (2019)

    Google Scholar 

  11. Davila, K., et al.: Chart mining: a survey of methods for automated chart analysis. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 3799–3819 (2021)

    Article  Google Scholar 

  12. Davila, K., et al.: ICPR 2020 - competition on harvesting raw tables from infographics. In: Pattern Recognition. ICPR International Workshops and Challenges: Virtual Event, pp. 361–380 (2021)

    Google Scholar 

  13. Davila, K., et al.: ICPR: challenge on harvesting raw tables from infographics (CHART-infographics). In: 26th International Conference on Pattern Recognition (ICPR), pp. 4995–5001 (2022)

    Google Scholar 

  14. Gao, J., et al.: View: visual information extraction widget for improving chart images accessibility. In: 19th IEEE International Conference on Image Processing, pp. 2865–2868 (2012)

    Google Scholar 

  15. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  16. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications (2017). http://arxiv.org/abs/1704.04861

  17. Huang, G., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  18. Jung, D., et al.: ChartSense: interactive data extraction from chart images. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (2017)

    Google Scholar 

  19. Karthikeyani, V., Nagarajan, S.: Machine learning classification algorithms to recognize chart types in portable document format (PDF) files. IJCA 39(2), 1–5 (2012)

    Article  Google Scholar 

  20. Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  21. kv, J., et al.: DocFigure: a dataset for scientific document figure classification. In: International Conference on Document Analysis and Recognition Workshops (ICDARW) (2019)

    Google Scholar 

  22. Liu, X., et al.: Chart classification by combining deep convolutional networks and deep belief networks. In: 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 801–805 (2015)

    Google Scholar 

  23. Liu, X., et al.: Data extraction from charts via single deep neural network. arXiv preprint arXiv:1906.11906 (2019)

  24. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  25. Liu, Z., et al.: A ConvNet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  26. Luo, J., et al.: ChartOCR: data extraction from charts images via a deep hybrid framework. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1916–1924. IEEE, Waikoloa (2021)

    Google Scholar 

  27. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 8026–8037. Curran Associates Inc., Red Hook (2019)

    Google Scholar 

  28. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  29. Savva, M., et al.: ReVision: automated classification, analysis and redesign of chart images. In: Proceedings of the 24th annual ACM symposium on User interface software and technology, pp. 393–402. Association for Computing Machinery, New York (2011)

    Google Scholar 

  30. Siegel, N., Horvitz, Z., Levin, R., Divvala, S., Farhadi, A.: FigureSeer: parsing result-figures in research papers. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 664–680. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_41

    Chapter  Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015). http://arxiv.org/abs/1409.1556

  32. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  33. Szegedy, C., et al.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  34. Thiyam, J., et al.: Challenges in chart image classification: a comparative study of different deep learning methods. In: Proceedings of the 21st ACM Symposium on Document Engineering, pp. 1–4. Association for Computing Machinery, New York (2021)

    Google Scholar 

  35. Thiyam, J., et al.: Chart classification: an empirical comparative study of different learning models. Presented at the December 19 (2021)

    Google Scholar 

  36. Touvron, H., et al.: Training data-efficient image transformers & distillation through attention. In: Proceedings of the 38th International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Javed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dhote, A., Javed, M., Doermann, D.S. (2023). A Survey and Approach to Chart Classification. In: Coustaty, M., Fornés, A. (eds) Document Analysis and Recognition – ICDAR 2023 Workshops. ICDAR 2023. Lecture Notes in Computer Science, vol 14193. Springer, Cham. https://doi.org/10.1007/978-3-031-41498-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41498-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41497-8

  • Online ISBN: 978-3-031-41498-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics