Abstract
Large language models are deep learning models with a large number of parameters. The models made noticeable progress on a large number of tasks, and as a consequence allowing them to serve as valuable and versatile tools for a diverse range of applications. Their capabilities also offer opportunities for business process management, however, these opportunities have not yet been systematically investigated. In this paper, we address this research problem by foregrounding various management tasks of the BPM lifecycle. We investigate six research directions highlighting problems that need to be addressed when using large language models, including usage guidelines for practitioners.
M. Vidgof and S. Bachhofner—Equal contribution.
This research received funding from the Teaming.AI project, which is part of the European Union’s Horizon 2020 research and innovation program under grant agreement No 957402. The research by Jan Mendling was supported by the Einstein Foundation Berlin under grant EPP-2019-524 and by the German Federal Ministry of Education and Research under grant 16DII133.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
See for example the OpenAI Cookbook GitHub repository, which provides code examples for the OpenAI API.
- 2.
- 3.
See the ChatGPT failure archive (GitHub) for an up-to-date list.
- 4.
References
Van der Aa, H., Carmona Vargas, J., Leopold, H., Mendling, J., Padró, L.: Challenges and opportunities of applying natural language processing in business process management. In: COLING 2018: The 27th International Conference on Computational Linguistics: Proceedings of the Conference: August 20–26, 2018 Santa Fe, New Mexico, USA. pp. 2791–2801. Association for Computational Linguistics (2018)
Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S.: On the dangers of stochastic parrots: can language models be too big? In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. FAccT 2021, New York, NY, USA, pp. 610–623. Association for Computing Machinery (2021). https://doi.org/10.1145/3442188.3445922
Blagec, K., Kraiger, J., Frühwirt, W., Samwald, M.: Benchmark datasets driving artificial intelligence development fail to capture the needs of medical professionals. J. Biomed. Inform. 37, 104274 (2022)
Borji, A.: A categorical archive of ChatGPT failures (2023). https://doi.org/10.48550/ARXIV.2302.03494, https://arxiv.org/abs/2302.03494
Brown, T., et al.: Language models are few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
van Dis, E.A.M., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: ChatGPT: five priorities for research. Nature 614(7947), 224–226 (2023)
Dumas, M., et al.: AI-augmented business process management systems: a research manifesto. ACM Trans. Manag. Inf. Syst. 14(1), 1–19 (2023)
Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management, vol. 2. Springer, Cham (2018). https://doi.org/10.1007/978-3-662-56509-4
Hutson, M.: Robo-writers: the rise and risks of language-generating AI. Nature 591(7848), 22–25 (2021)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput. Surv. 55(9), 1–35 (2023)
Loizos, C.: StrictlyVC in conversation with Sam Altman, part two (OpenAI) (2023). https://www.youtube.com/watch?v=ebjkD1Om4uw, YouTube channel of Connie Loizos
Malinova, M., Mendling, J.: Identifying do’s and don’ts using the integrated business process management framework. Bus. Process. Manag. J. 24, 882–899 (2018)
Miller, J.A., Mahmud, R.: Research directions in process modeling and mining using knowledge graphs and machine learning. In: Qingyang, W., Zhang, L.J. (eds.) SCC 2022. LNCS, pp. 86–100. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23515-3_7
Mjolsness, E., DeCoste, D.: Machine learning for science: state of the art and future prospects. Science 293(5537), 2051–2055 (2001)
Neu, D.A., Lahann, J., Fettke, P.: A systematic literature review on state-of-the-art deep learning methods for process prediction. Artif. Intell. Rev. 55, 801–827 (2022)
Nolle, T., Seeliger, A., Thoma, N., Mühlhäuser, M.: DeepAlign: alignment-based process anomaly correction using recurrent neural networks. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 319–333. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_20
OpenAI: Model index for researchers. https://platform.openai.com/docs/model-index-for-researchers/model-index-for-researchers
OpenAI: Chatgpt: optimizing language models for dialogue (2022). https://openai.com/blog/chatgpt/
OpenAI: ChatGPT plugins (2023). https://openai.com/blog/chatgpt-plugins
OpenAI: GPT-4 technical report (2023). https://cdn.openai.com/papers/gpt-4.pdf
Ouyang, L., et al.: Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155 (2022)
Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018). https://openai.com/blog/language-unsupervised/
Radford, A., et al.: Language models are unsupervised multitask learners (2019). https://openai.com/blog/better-language-models/
Rosemann, M., vom Brocke, J.: The six core elements of business process management. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 1. IHIS, pp. 105–122. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-642-45100-3_5
Scao, T.L., et al.: Bloom: a 176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100 (2022)
Schäfer, B., Van der Aa, H., Leopold, H., Stuckenschmidt, H.: Sketch2process: end-to-end BPMN sketch recognition based on neural networks. IEEE Trans. Software Eng. 49, 2621–2641 (2022)
Sommers, D., Menkovski, V., Fahland, D.: Supervised learning of process discovery techniques using graph neural networks. Inf. Syst. 115, 102209 (2023)
Stiennon, N., et al.: Learning to summarize with human feedback. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems. vol. 33, pp. 3008–3021. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
Stokel-Walker, C.: AI bot ChatGPT writes smart essays-should academics worry? Nature (2022)
Teubner, T., Flath, C.M., Weinhardt, C., van der Aalst, W., Hinz, O.: Welcome to the era of ChatGPT et al. the prospects of large language models. Bus. Inf. Syst. Eng. 65, 95–101 (2023)
Van Noorden, R.: How language-generation AIs could transform science. Nature 605(7908), 21 (2022)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Zhang, S., et al.: OPT: open pre-trained transformer language models. arXiv preprint: https://arxiv.org/abs/2205.01068 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Vidgof, M., Bachhofner, S., Mendling, J. (2023). Large Language Models for Business Process Management: Opportunities and Challenges. In: Di Francescomarino, C., Burattin, A., Janiesch, C., Sadiq, S. (eds) Business Process Management Forum. BPM 2023. Lecture Notes in Business Information Processing, vol 490. Springer, Cham. https://doi.org/10.1007/978-3-031-41623-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-41623-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-41622-4
Online ISBN: 978-3-031-41623-1
eBook Packages: Computer ScienceComputer Science (R0)