Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Large Language Models for Business Process Management: Opportunities and Challenges

  • Conference paper
  • First Online:
Business Process Management Forum (BPM 2023)

Abstract

Large language models are deep learning models with a large number of parameters. The models made noticeable progress on a large number of tasks, and as a consequence allowing them to serve as valuable and versatile tools for a diverse range of applications. Their capabilities also offer opportunities for business process management, however, these opportunities have not yet been systematically investigated. In this paper, we address this research problem by foregrounding various management tasks of the BPM lifecycle. We investigate six research directions highlighting problems that need to be addressed when using large language models, including usage guidelines for practitioners.

M. Vidgof and S. Bachhofner—Equal contribution.

This research received funding from the Teaming.AI project, which is part of the European Union’s Horizon 2020 research and innovation program under grant agreement No 957402. The research by Jan Mendling was supported by the Einstein Foundation Berlin under grant EPP-2019-524 and by the German Federal Ministry of Education and Research under grant 16DII133.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See for example the OpenAI Cookbook GitHub repository, which provides code examples for the OpenAI API.

  2. 2.

    Rubber duck debugging.

  3. 3.

    See the ChatGPT failure archive (GitHub) for an up-to-date list.

  4. 4.

    https://openai.com/blog/chatgpt-plugins.

References

  1. Van der Aa, H., Carmona Vargas, J., Leopold, H., Mendling, J., Padró, L.: Challenges and opportunities of applying natural language processing in business process management. In: COLING 2018: The 27th International Conference on Computational Linguistics: Proceedings of the Conference: August 20–26, 2018 Santa Fe, New Mexico, USA. pp. 2791–2801. Association for Computational Linguistics (2018)

    Google Scholar 

  2. Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S.: On the dangers of stochastic parrots: can language models be too big? In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. FAccT 2021, New York, NY, USA, pp. 610–623. Association for Computing Machinery (2021). https://doi.org/10.1145/3442188.3445922

  3. Blagec, K., Kraiger, J., Frühwirt, W., Samwald, M.: Benchmark datasets driving artificial intelligence development fail to capture the needs of medical professionals. J. Biomed. Inform. 37, 104274 (2022)

    Google Scholar 

  4. Borji, A.: A categorical archive of ChatGPT failures (2023). https://doi.org/10.48550/ARXIV.2302.03494, https://arxiv.org/abs/2302.03494

  5. Brown, T., et al.: Language models are few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

  6. van Dis, E.A.M., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: ChatGPT: five priorities for research. Nature 614(7947), 224–226 (2023)

    Article  Google Scholar 

  7. Dumas, M., et al.: AI-augmented business process management systems: a research manifesto. ACM Trans. Manag. Inf. Syst. 14(1), 1–19 (2023)

    Article  Google Scholar 

  8. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management, vol. 2. Springer, Cham (2018). https://doi.org/10.1007/978-3-662-56509-4

    Book  Google Scholar 

  9. Hutson, M.: Robo-writers: the rise and risks of language-generating AI. Nature 591(7848), 22–25 (2021)

    Article  Google Scholar 

  10. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  11. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput. Surv. 55(9), 1–35 (2023)

    Article  Google Scholar 

  12. Loizos, C.: StrictlyVC in conversation with Sam Altman, part two (OpenAI) (2023). https://www.youtube.com/watch?v=ebjkD1Om4uw, YouTube channel of Connie Loizos

  13. Malinova, M., Mendling, J.: Identifying do’s and don’ts using the integrated business process management framework. Bus. Process. Manag. J. 24, 882–899 (2018)

    Article  Google Scholar 

  14. Miller, J.A., Mahmud, R.: Research directions in process modeling and mining using knowledge graphs and machine learning. In: Qingyang, W., Zhang, L.J. (eds.) SCC 2022. LNCS, pp. 86–100. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23515-3_7

    Chapter  Google Scholar 

  15. Mjolsness, E., DeCoste, D.: Machine learning for science: state of the art and future prospects. Science 293(5537), 2051–2055 (2001)

    Article  Google Scholar 

  16. Neu, D.A., Lahann, J., Fettke, P.: A systematic literature review on state-of-the-art deep learning methods for process prediction. Artif. Intell. Rev. 55, 801–827 (2022)

    Article  Google Scholar 

  17. Nolle, T., Seeliger, A., Thoma, N., Mühlhäuser, M.: DeepAlign: alignment-based process anomaly correction using recurrent neural networks. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 319–333. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_20

    Chapter  Google Scholar 

  18. OpenAI: Model index for researchers. https://platform.openai.com/docs/model-index-for-researchers/model-index-for-researchers

  19. OpenAI: Chatgpt: optimizing language models for dialogue (2022). https://openai.com/blog/chatgpt/

  20. OpenAI: ChatGPT plugins (2023). https://openai.com/blog/chatgpt-plugins

  21. OpenAI: GPT-4 technical report (2023). https://cdn.openai.com/papers/gpt-4.pdf

  22. Ouyang, L., et al.: Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155 (2022)

  23. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018). https://openai.com/blog/language-unsupervised/

  24. Radford, A., et al.: Language models are unsupervised multitask learners (2019). https://openai.com/blog/better-language-models/

  25. Rosemann, M., vom Brocke, J.: The six core elements of business process management. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 1. IHIS, pp. 105–122. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-642-45100-3_5

    Chapter  Google Scholar 

  26. Scao, T.L., et al.: Bloom: a 176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100 (2022)

  27. Schäfer, B., Van der Aa, H., Leopold, H., Stuckenschmidt, H.: Sketch2process: end-to-end BPMN sketch recognition based on neural networks. IEEE Trans. Software Eng. 49, 2621–2641 (2022)

    Article  Google Scholar 

  28. Sommers, D., Menkovski, V., Fahland, D.: Supervised learning of process discovery techniques using graph neural networks. Inf. Syst. 115, 102209 (2023)

    Article  Google Scholar 

  29. Stiennon, N., et al.: Learning to summarize with human feedback. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems. vol. 33, pp. 3008–3021. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf

  30. Stokel-Walker, C.: AI bot ChatGPT writes smart essays-should academics worry? Nature (2022)

    Google Scholar 

  31. Teubner, T., Flath, C.M., Weinhardt, C., van der Aalst, W., Hinz, O.: Welcome to the era of ChatGPT et al. the prospects of large language models. Bus. Inf. Syst. Eng. 65, 95–101 (2023)

    Article  Google Scholar 

  32. Van Noorden, R.: How language-generation AIs could transform science. Nature 605(7908), 21 (2022)

    Article  Google Scholar 

  33. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  34. Zhang, S., et al.: OPT: open pre-trained transformer language models. arXiv preprint: https://arxiv.org/abs/2205.01068 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Vidgof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vidgof, M., Bachhofner, S., Mendling, J. (2023). Large Language Models for Business Process Management: Opportunities and Challenges. In: Di Francescomarino, C., Burattin, A., Janiesch, C., Sadiq, S. (eds) Business Process Management Forum. BPM 2023. Lecture Notes in Business Information Processing, vol 490. Springer, Cham. https://doi.org/10.1007/978-3-031-41623-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41623-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41622-4

  • Online ISBN: 978-3-031-41623-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics