Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multicriteria Task Distribution Problem for Resource-Saving Data Processing

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14098))

Included in the following conference series:

Abstract

In the current paper a question of the resource-saving tasks distribution is under consideration. The problem of computational resource saving is topical because of the enormous data volumes, which are preprocessed partially by the fog- and edge- network layers. In general, scheduling and resource allocation are modeled via combinatorial optimization problems without consideration of the fact that the computational environment is geographically distributed. The consequence of such distribution is that the tasks assigned to some nodes have to transmit the data through some transit network sections. As the data transmission produces workload and consumes time, which degrade the average residual time of the nodes, in this paper we propose the novel problem model, which is structural-parametric and focuses not only on the functional tasks assignment to the nodes, but to the data transmission workload, which disseminates through the data transmission routes. The generic solution method is proposed on the base of multiplicative convolution and random search. The produced results show the positive effect of the workload distribution on the nodes reliability function values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D’Amato, A., Andrade, W.: A resource allocation model driven through QoC for distributed systems (2022). https://doi.org/10.5772/intechopen.106458

  2. Zhijun, G., Gang, C.: Distributed dynamic event-triggered and practical predefined-time resource allocation in cyber–physical systems. Automatica 142, 110390 (2022). https://doi.org/10.1016/j.automatica.2022.110390

    Article  MathSciNet  MATH  Google Scholar 

  3. Junbin, L., Jie, Z., Victor, L., Xu, W.: Distributed information exchange with low latency for decision making in vehicular fog computing. IEEE Internet Things J. 9, 18166–18181 (2022). https://doi.org/10.1109/JIOT.2021.3075516

    Article  Google Scholar 

  4. Kanika, S., Bernard, B., Jennings, B.: Graph-based heuristic solution for placing distributed video processing applications on moving vehicle clusters. IEEE Trans. Netw. Serv. Manag. 19, 1 (2022). https://doi.org/10.1109/TNSM.2022.3173913

    Article  Google Scholar 

  5. Haghi Kashani, M., Mahdipour, E:. Load balancing algorithms in fog computing, 1–18 (2022). https://doi.org/10.1109/TSC.2022.3174475

  6. Singh, P., et al.: A fog-cluster based load-balancing technique. Sustainability 14, 1–14 (2022). https://doi.org/10.3390/su14137961

  7. Mahmoudi, Z., Darbanian, E., Nickray, M.: Optimal energy consumption and cost performance solution with delay constraints on fog computing. Jordanian J. Comput. Inf. Technol., 1 (2023). https://doi.org/10.5455/jjcit.71-1667637331

  8. Yao, J., Ansari, N.: Fog resource provisioning in reliability-aware IoT networks. IEEE Internet Things J., 1 (2019). https://doi.org/10.1109/JIOT.2019.2922585

  9. Klimenko, A.: The basic elements of devices resource consumption decreasing metodology for distributed systems on the basis of fog- and edge-computing. Proc. Southwest State Univ. 26, 151–167 (2023). https://doi.org/10.21869/2223-15602022-26-3-151-167

  10. Melnik, E., Korovin, I., Klimenko, A.: Improving dependability of reconfigurable robotic control system. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2017. LNCS (LNAI), vol. 10459, pp. 144–152. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66471-2_16

    Chapter  Google Scholar 

  11. Korovin, I., Melnik, E., Klimenko, A.: The fog-computing based reliability enhancement in the robot swarm. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2019. LNCS (LNAI), vol. 11659, pp. 161–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26118-4_16

    Chapter  Google Scholar 

  12. Klimenko, A.B., Melnik, E.V.: A method of improving the reliability of the nodes containing ledger replicas. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds.) CoMeSySo 2021. LNNS, vol. 232, pp. 584–592. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90318-3_47

    Chapter  Google Scholar 

  13. Klimenko, A., Kalyaev, I.: A technique to provide an efficient system recovery in the fog- and edge-environments of robotic systems. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2021. LNCS (LNAI), vol. 12998, pp. 100–112. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87725-5_9

    Chapter  Google Scholar 

  14. Salem, A., Algaphari, G.: Resource allocation in fog computing: a systematic review. J. Sci. Technol. 27, 9–31. https://doi.org/10.20428/jst.v27i2.2052

  15. Gong, C., He, W., Wang, T., Gani, A., Qi, H.: Dynamic resource allocation scheme for mobile edge computing. J. Supercomput. (2023). https://doi.org/10.1007/s11227-023-05323-y

  16. Liu, Z., Lan, Q., Huang, K.: Resource allocation for multiuser edge inference with batching and early exiting. IEEE J. Sel. Areas Commun., 1 (2023). https://doi.org/10.1109/JSAC.2023.3242724

  17. Murhekar, A., Arbour, D., Mai, T., Rao, A.: Dynamic vector bin packing for online resource allocation in the cloud (2023)

    Google Scholar 

  18. Klimenko, A.: Model and method of resource-saving tasks distribution for the fog robotics. In: Ronzhin, A., Meshcheryakov, R., Xiantong, Z. (eds.) ICR 2022. LNCS, vol. 13719, pp. 210–222. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23609-9_19

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Klimenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klimenko, A., Barinov, A. (2023). Multicriteria Task Distribution Problem for Resource-Saving Data Processing. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2023. Lecture Notes in Computer Science, vol 14098. Springer, Cham. https://doi.org/10.1007/978-3-031-41673-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41673-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41672-9

  • Online ISBN: 978-3-031-41673-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics