Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Symbolic-Numerical Algorithm for Solving the Problem of Heavy Ion Collisions in an Optical Model with a Complex Potential

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2023)

Abstract

We present an original algorithm in the MAPLE system for solving the scattering problem in single-channel approximation of the coupled-channel method of the optical model (OM) described by a second-order ordinary differential equation (ODE) with a complex-valued potential and regular boundary conditions. The complex-valued potential consists of the known real part, which is a sum of the nuclear potential, the Coulomb potential, and the centrifugal potential, and the imaginary part, which is a product of the unknown coupling constant g(E), depending on the collision energy E of a pair of ions, and the derivative of the real part of the known nuclear potential with respect to the ODE independent variable.

The presented algorithm implements the solution of the inverse problem, i.e., calculates the unknown coupling constant g(E) and scattering matrix S(g(E), E) from condition \(|S(g(E),E)|^{2}=1-|T(E)|^{2}\) by means of the secant method. The required amplitudes of transmission T(E) and reflection R(E) subject also to the condition \(|R(E)|^{2}=1 -|T(E)|^{2}\) of the model with incoming wave boundary conditions (IWBCs) are previously calculated by the standard MAPLE implemented KANTBP 4M program.

The algorithm provides a one-to-one correspondence between the OM with a complex-valued potential and the model of IWBCs with a real-valued potential.

The efficiency of the proposed approach is shown by solving numerically the scattering problem and calculating the reference fusion cross section for a pair of heavy ions \(^{16}\)O+\(^{144}\)Sm in the single-channel approximation of the close-coupling method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Feshbach, H., Porter, C.E., Weisskopf, V.F.: Model for nuclear reactions with neutrons. Phys. Rev. 96, 448–464 (1954)

    Article  MATH  Google Scholar 

  2. Buck, B., Stamp, A.P., Hodgson, P.E.: The excitation of collective states by inelastic scattering the extended optical model. Phil. Mag. J. Theor. Exp. Appl. Phys. 8, 1805–1826 (1963)

    MATH  Google Scholar 

  3. Tamura, K.: Analyses of the scattering of nuclear particles by collective nuclei in terms of the coupled-channel calculation. Rev. Mod. Phys. 37, 679–708 (1965)

    Article  MathSciNet  Google Scholar 

  4. Guenther, P.T., Havel, D.G., Smith, A.B.: Neutron scattering and the optical model near A = 208 and implications on the inelastic scattering cross section of uranium-238. Nucl. Sci. Eng. 65, 174–180 (1978)

    Article  Google Scholar 

  5. Mişicu, Ş, Esbensen, H.: Signature of shallow potentials in deep sub-barrier fusion reactions. Phys. Rev. C 75, 034606 (2007)

    Article  Google Scholar 

  6. Esbensen, H., Tang, X., Jiang, C.L.: Effects of mutual excitations in the fusion of carbon isotopes. Phys. Rev. C 84, 064613 (2011)

    Article  Google Scholar 

  7. Rawitscher, G.H.: Ingoing wave boundary condition analysis of alpha and deuteron elastic scattering cross sections. Nucl. Phys. 85, 337–364 (1963)

    Article  Google Scholar 

  8. Christensen, P.R., Switkowski, Z.E.: IWB analysis of scattering and fusion cross sections for the \(^{12}\)C+\(^{12}\)C, \(^{13}\)C+\(^{16}\)O and \(^{16}\)O+\(^{16}\)O reactions for energies near and below the Coulomb barrier. Nucl. Phys. A 280, 205–216 (1977)

    Article  Google Scholar 

  9. Krappe, H.J., Shring, K.M., Nemes, M.C., Rossner, H.: On the interpretation of heavy-ion sub-barrier fusion data. Z. Phys. A. 314, 23–31 (1983)

    Article  Google Scholar 

  10. Hagino, K., Rowley, N., Kruppa, A.T.: A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Comput. Phys. Commun. 123, 143–152 (1999)

    Article  MATH  Google Scholar 

  11. Hagino, K., Takigawa, N.: Subbarrier fusion reactions and many-particle quantum tunneling. Prog. Theor. Phys. 128, 1061–1106 (2012)

    Article  Google Scholar 

  12. Back, B.B., Esbensen, H., Jiang, C.L., Rehm, K.E.: Recent developments in heavy-ion fusion reactions. Rev. Mod. Phys. 86, 317–360 (2014)

    Article  Google Scholar 

  13. Hagino, K., Ogata, K., Moro, A.M.: Coupled-channels calculations for nuclear reactions: from exotic nuclei to super heavy elements. Prog. Part. Nucl. Phys. 125, 103951 (2022)

    Article  Google Scholar 

  14. Samarin, V.V., Zagrebaev, V.I.: Channel coupling analysis of initial reaction stage in synthesis of super-heavy nuclei. Nucl. Phys. A 734, E9–E12 (2004)

    Google Scholar 

  15. Zagrebaev, V.I., Samarin, V.V.: Near-barrier fusion of heavy nuclei: coupling of channels. Phys. Atom. Nucl. 67, 1462–1477 (2004)

    Article  Google Scholar 

  16. Zagrebaev, V.: Heavy Ion Reactions at Low Energies. In: Denikin, A., Karpov, A., Rowley, N. (eds.) Lecture Notes in Physics, vol. 963. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27217-3

  17. Wen, P.W., et al.: Near-barrier heavy-ion fusion: role of boundary conditions in coupling of channels. Phys. Rev. C 101, 014618 (2020)

    Article  Google Scholar 

  18. Wen, P.W., Lin, C.J., Nazmitdinov, R.G., Vinitsky, S.I., Chuluunbaatar, O., Gusev, A.A., Nasirov, A.K., Jia, H.M., Góźdź, A.: Potential roots of the deep subbarrier heavy-ion fusion hindrance phenomenon within the sudden approximation approach. Phys. Rev. C 103, 054601 (2021)

    Article  Google Scholar 

  19. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP 3.0: new version of a program for computing energy levels, reflection and transmission matrices, and corresponding wave functions in the coupled-channel adiabatic approach. Comput. Phys. Commun. 185, 3341–3343 (2014)

    Article  MATH  Google Scholar 

  20. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G., Wen, P.W., Lin, C.J.: KANTBP 3.1: a program for computing energy levels, reflection and transmission matrices, and corresponding wave functions in the coupled-channel and adiabatic approaches. Comput. Phys. Commun. 278, 108397 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bohr, A., Mottelson, B.R.: Nuclear Structure. Single Particle Motion. V. I, W.A. Benjamin. New York, Amsterdam (1969)

    Google Scholar 

  22. Bohr, A., Mottelson, B.R.: Nuclear Structure. Nuclear Deformation. V. II, W.A. Benjamin. New York, Amsterdam (1974)

    Google Scholar 

  23. Karpov, A.V., et al.: NRV web knowledge base on low-energy nuclear physics. Nucl. Instr. Meth. Phys. Res. A 859, 112–124 (2017)

    Article  Google Scholar 

  24. Gusev, A.A., Hai, L.L., Chuluunbaatar, O., Vinitsky, S.I.: KANTBP 4M - program for solving boundary problems of the self-adjoint system of ordinary second order differential equations. http://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m/indexe.html. Accessed 17 May 2023

  25. https://www.maplesoft.com

  26. Takigawa, N., Rumin, T., Ihara, N.: Coulomb interaction between spherical and deformed nuclei. Phys. Rev. C 61, 044607 (2000)

    Article  Google Scholar 

  27. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, NY (1965)

    MATH  Google Scholar 

  28. Chuluunbaatar, O., et al.: Calculation of a hydrogen atom photoionization in a strong magnetic field by using the angular oblate spheroidal functions. J. Phys. A 40, 11485–11524 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gusev, A.A.: Symbolic-numeric solution of boundary-value problems for the Schrödinger equation using the finite element method: scattering problem and resonance states. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 182–197. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24021-3_14

    Chapter  Google Scholar 

Download references

Acknowledgments

The present research benefited from computational resources of the HybriLIT heterogeneous platform of the JINR. This publication has been supported by the Russian Foundation for Basic Research and Ministry of Education, Culture, Science and Sports of Mongolia (the grant 20-51-44001) and the Peoples’ Friendship University of Russia (RUDN) Strategic Academic Leadership Program, project No.021934-0-000. This research is funded by Ho Chi Minh City University of Education Foundation for Science and Technology (grant No. CS.2021.19.47).

OCH acknowledges financial support from the Ministry of Education and Science of Mongolia (grant No. ShuG 2021/137). The work of PWW, CJL, and HMJ is supported by the National Key R &D Program of China (Contract No. 2022YFA1602302), the National Natural Science Foundation of China (Grants Nos. 12235020, 12275360, 12175314, 12175313, and U2167204), the Leading Innovation Project (Grant No. LC192209000701), and the project supported by the Directors Foundation of Department of Nuclear Physics, China Institute of Atomic Energy (12SZJJ-202305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gusev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gusev, A.A. et al. (2023). Symbolic-Numerical Algorithm for Solving the Problem of Heavy Ion Collisions in an Optical Model with a Complex Potential. In: Boulier, F., England, M., Kotsireas, I., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2023. Lecture Notes in Computer Science, vol 14139. Springer, Cham. https://doi.org/10.1007/978-3-031-41724-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41724-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41723-8

  • Online ISBN: 978-3-031-41724-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics