Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A New Approach for the Diagnosis of Children Personality Disorders Based on Semantic Analysis

  • Conference paper
  • First Online:
Advances in Computational Collective Intelligence (ICCCI 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1864))

Included in the following conference series:

  • 531 Accesses

Abstract

Psychology is the scientific study of behavior and experience, of how humans and animals feel, think, learn and adapt to their environment. When psychology meets modern technology in computer science, it creates Psycho-informatics. In this paper, we propose an approach and its tool, for the benefits of children having psychological issues. This approach extracts the different traits from raw documentations of personality disorders based on semantic analysis. These traits are then used to build, automatically, a personalized test depending on the disorder(s) estimated by the psychiatrist. The responses of the child’s parent on this test are then analyzed to generate a report for the psychiatrist, which would be useful in the precise diagnosis of the child.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ayandele, O.: Basic Psychology. Hope Publications Ltd., Ibadan (2016)

    Google Scholar 

  2. Bockian, N.R., Smith, J.C., Berghuis, D.J.: The Personality Disorders Treatment Planner: Includes DSM-5 Updates. Wiley, New York (2016)

    Google Scholar 

  3. Chittaranjan, Gokul, B.J., Gatica-Perez, D.: Mining large-scale smartphone data for personality studies. Pers. Ubiquit. Comput. 17, 433–450 (2013). https://doi.org/10.1007/s00779-011-0490-1

  4. Correa, T., Hinsley, A.W., de Zuniga, H.G.: Who interacts on the web? The intersection of users personality and social media use. Comput. Hum. Behav. 26(2), 247–253 (2010)

    Article  Google Scholar 

  5. Dalianis, H.: Evaluation metrics and evaluation. In: Dalianis, H. (ed.) Clinical Text Mining, pp. 45–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78503-5_6

    Chapter  Google Scholar 

  6. Kupfer, D.J., et al.: 5th edn. American Psychiatric Publishing. A Division of American Psychiatric Association, Washington, DC (2013)

    Google Scholar 

  7. Ester, M., Peter Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press (1996)

    Google Scholar 

  8. Finkel, A.: L’analyse cognitive, la psychologie numérique et la formation des enseignants à l’ université. Pratiques Psychologiques 23(3), 303–323 (2017). https://doi.org/10.1016/j.prps.2017.05.006

  9. Gerlach, M., Farb, B., Revelle, W., Amaral, L.A.N.: A robust data-driven approach identifies four personality types across four large data sets. Nat. Hum. Behav. 2, 735–742 (2018). https://doi.org/10.1038/s41562-018-0419-z

    Article  Google Scholar 

  10. Goldberg, L.: Language and individual differences: the search for universal in personality lexicons. Rev. Pers. Soc. Psychol. 2, 141–165 (1981)

    Google Scholar 

  11. Goldberg, L.R.: The structure of phenotypic personality traits. Am. Psychol. 48(1), 26 (1993)

    Article  Google Scholar 

  12. Gosling, S.D., Augustine, A., Vazire, S., Holtzman, N., Gaddis, S.: Manifestations of personality in online social networks: self-reported Facebook-related behaviors and observable profile information. Cyberpsychol. Behav. Soc. Netw. 14(9) (2011). https://doi.org/10.1089/cyber.2010.0087

  13. Hu, S., et al.: Signatures of personality on dense 3D facial images. Sci. Rep. 7(1), 73 (2017)

    Article  Google Scholar 

  14. Kerber, A., Roth, M., Herzberg, P.Y.: Personality types revisited-a literature-informed and data-driven approach to an integration of prototypical and dimensional constructs of personality description. PLOS ONE 16(1), 1–27 (2021)

    Article  Google Scholar 

  15. Kosinski, M., Bachrach, Y., Kohli, P., Stillwell, D., Graepel, T.: Manifestations of user personality in website choice and behaviour on online social networks. Mach. Learn. 95(3), 357–380 (2013). https://doi.org/10.1007/s10994-013-5415-y

    Article  MathSciNet  Google Scholar 

  16. Lee, T.T.C.: Minnesota multiphasic personality inventory (MMPI). In: Zeigler-Hill, V., Shackelford, T.K. (eds.) Encyclopedia of Personality and Individual Differences, pp. 2915–2918. Springer, Cham (2020). https://doi.org/10.1007/978-3-319-24612-3_914

    Chapter  Google Scholar 

  17. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  18. Markowetz, A., Blaszkiewicz, K., Montag, C., Switala, C., Schlaepfer, T.: Psycho-informatics: big data shaping modern psychometrics. Med. Hypotheses 82 (2014). https://doi.org/10.1016/j.mehy.2013.11.030

  19. Marty, M., Segal, D.: DSM-5: Diagnostic and Statistical Manual of Mental Disorders, pp. 965–970 (2015)

    Google Scholar 

  20. Mdhaffar, A., et al.: DL4DED: deep learning for depressive episode detection on mobile devices. In: Pagán, J., Mokhtari, M., Aloulou, H., Abdulrazak, B., Cabrera, M.F. (eds.) ICOST 2019. LNCS, vol. 11862, pp. 109–121. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32785-9_10

    Chapter  Google Scholar 

  21. Mefteh, M., Bouassida, N., Ben-Abdallah, H.: Towards naturalistic programming: mapping language-independent requirements to constrained language specifications. Sci. Comput. Program. 166, 89–119 (2018). https://doi.org/10.1016/j.scico.2018.05.006

  22. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995). https://doi.org/10.1145/219717.219748

    Article  Google Scholar 

  23. Montag, C., Duke, E., Markowetz, A.: Toward psychoinformatics: computer science meets psychology. Comput. Math. Methods Med. 2016 (2016). https://doi.org/10.1155/2016/2983685

  24. Muizz, R.A., Uddin, M.S., Sakib, M.M.N., Islam, S., Ahmed, N.: BigPsy: a big data framework to support psycho-informatics. Master’s thesis, Brac University (6 2021)

    Google Scholar 

  25. Qin, R., Gao, W., Xu, H., Hu, Z.: Modern physiognomy: an investigation o predicting personality traits and intelligence from the human face. Sci. China Inf. Sci. 61 (2018). https://doi.org/10.1007/s00779-011-0490-1

  26. Rorschach, H., Oberholzer, E., Lemkau, P.V., Morgenthaler, W.: Psychodiagnostics: a diagnostic test based on perception: including Rorschach’s paper the application of the form interpretation test (published posthumously by Dr. Emil Oberholzer). Verlag Hans Huber, Berne, Switzerland (1942)

    Google Scholar 

  27. Thelin, T., Runeson, P., Wohlin, C., Olsson, T., Andersson, C.: Evaluation of usage-based reading-conclusions after three experiments. Empirical Softw. Eng. 9(1–2), 77–110 (2004)

    Article  Google Scholar 

  28. Xu, J., Tian, W., Lv, G., Liu, S., Fan, Y.: 2.5D facial personality prediction based on deep learning. J. Adv. Transp. 2021 (2021)

    Google Scholar 

  29. Yarkoni, T.: Psychoinformatics new horizons at the interface of the psychological and computing sciences. Curr. Dir. Psychol. Sci. 21, 391–397 (2012). https://doi.org/10.1177/0963721412457362

    Article  Google Scholar 

  30. Zhong, B., Hardin, M., Sun, T.: Less effortful thinking leads to more social networking? The associations between the use of social network sites and personality traits. Comput. Hum. Behav. 27(3), 1265–1271 (2011). https://doi.org/10.1016/j.chb.2011.01.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiman Chakroun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakroun, A., Mefteh, M., Bouassida, N. (2023). A New Approach for the Diagnosis of Children Personality Disorders Based on Semantic Analysis. In: Nguyen, N.T., et al. Advances in Computational Collective Intelligence. ICCCI 2023. Communications in Computer and Information Science, vol 1864. Springer, Cham. https://doi.org/10.1007/978-3-031-41774-0_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41774-0_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41773-3

  • Online ISBN: 978-3-031-41774-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics