Abstract
Psychology is the scientific study of behavior and experience, of how humans and animals feel, think, learn and adapt to their environment. When psychology meets modern technology in computer science, it creates Psycho-informatics. In this paper, we propose an approach and its tool, for the benefits of children having psychological issues. This approach extracts the different traits from raw documentations of personality disorders based on semantic analysis. These traits are then used to build, automatically, a personalized test depending on the disorder(s) estimated by the psychiatrist. The responses of the child’s parent on this test are then analyzed to generate a report for the psychiatrist, which would be useful in the precise diagnosis of the child.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ayandele, O.: Basic Psychology. Hope Publications Ltd., Ibadan (2016)
Bockian, N.R., Smith, J.C., Berghuis, D.J.: The Personality Disorders Treatment Planner: Includes DSM-5 Updates. Wiley, New York (2016)
Chittaranjan, Gokul, B.J., Gatica-Perez, D.: Mining large-scale smartphone data for personality studies. Pers. Ubiquit. Comput. 17, 433–450 (2013). https://doi.org/10.1007/s00779-011-0490-1
Correa, T., Hinsley, A.W., de Zuniga, H.G.: Who interacts on the web? The intersection of users personality and social media use. Comput. Hum. Behav. 26(2), 247–253 (2010)
Dalianis, H.: Evaluation metrics and evaluation. In: Dalianis, H. (ed.) Clinical Text Mining, pp. 45–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78503-5_6
Kupfer, D.J., et al.: 5th edn. American Psychiatric Publishing. A Division of American Psychiatric Association, Washington, DC (2013)
Ester, M., Peter Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press (1996)
Finkel, A.: L’analyse cognitive, la psychologie numérique et la formation des enseignants à l’ université. Pratiques Psychologiques 23(3), 303–323 (2017). https://doi.org/10.1016/j.prps.2017.05.006
Gerlach, M., Farb, B., Revelle, W., Amaral, L.A.N.: A robust data-driven approach identifies four personality types across four large data sets. Nat. Hum. Behav. 2, 735–742 (2018). https://doi.org/10.1038/s41562-018-0419-z
Goldberg, L.: Language and individual differences: the search for universal in personality lexicons. Rev. Pers. Soc. Psychol. 2, 141–165 (1981)
Goldberg, L.R.: The structure of phenotypic personality traits. Am. Psychol. 48(1), 26 (1993)
Gosling, S.D., Augustine, A., Vazire, S., Holtzman, N., Gaddis, S.: Manifestations of personality in online social networks: self-reported Facebook-related behaviors and observable profile information. Cyberpsychol. Behav. Soc. Netw. 14(9) (2011). https://doi.org/10.1089/cyber.2010.0087
Hu, S., et al.: Signatures of personality on dense 3D facial images. Sci. Rep. 7(1), 73 (2017)
Kerber, A., Roth, M., Herzberg, P.Y.: Personality types revisited-a literature-informed and data-driven approach to an integration of prototypical and dimensional constructs of personality description. PLOS ONE 16(1), 1–27 (2021)
Kosinski, M., Bachrach, Y., Kohli, P., Stillwell, D., Graepel, T.: Manifestations of user personality in website choice and behaviour on online social networks. Mach. Learn. 95(3), 357–380 (2013). https://doi.org/10.1007/s10994-013-5415-y
Lee, T.T.C.: Minnesota multiphasic personality inventory (MMPI). In: Zeigler-Hill, V., Shackelford, T.K. (eds.) Encyclopedia of Personality and Individual Differences, pp. 2915–2918. Springer, Cham (2020). https://doi.org/10.1007/978-3-319-24612-3_914
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)
Markowetz, A., Blaszkiewicz, K., Montag, C., Switala, C., Schlaepfer, T.: Psycho-informatics: big data shaping modern psychometrics. Med. Hypotheses 82 (2014). https://doi.org/10.1016/j.mehy.2013.11.030
Marty, M., Segal, D.: DSM-5: Diagnostic and Statistical Manual of Mental Disorders, pp. 965–970 (2015)
Mdhaffar, A., et al.: DL4DED: deep learning for depressive episode detection on mobile devices. In: Pagán, J., Mokhtari, M., Aloulou, H., Abdulrazak, B., Cabrera, M.F. (eds.) ICOST 2019. LNCS, vol. 11862, pp. 109–121. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32785-9_10
Mefteh, M., Bouassida, N., Ben-Abdallah, H.: Towards naturalistic programming: mapping language-independent requirements to constrained language specifications. Sci. Comput. Program. 166, 89–119 (2018). https://doi.org/10.1016/j.scico.2018.05.006
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995). https://doi.org/10.1145/219717.219748
Montag, C., Duke, E., Markowetz, A.: Toward psychoinformatics: computer science meets psychology. Comput. Math. Methods Med. 2016 (2016). https://doi.org/10.1155/2016/2983685
Muizz, R.A., Uddin, M.S., Sakib, M.M.N., Islam, S., Ahmed, N.: BigPsy: a big data framework to support psycho-informatics. Master’s thesis, Brac University (6 2021)
Qin, R., Gao, W., Xu, H., Hu, Z.: Modern physiognomy: an investigation o predicting personality traits and intelligence from the human face. Sci. China Inf. Sci. 61 (2018). https://doi.org/10.1007/s00779-011-0490-1
Rorschach, H., Oberholzer, E., Lemkau, P.V., Morgenthaler, W.: Psychodiagnostics: a diagnostic test based on perception: including Rorschach’s paper the application of the form interpretation test (published posthumously by Dr. Emil Oberholzer). Verlag Hans Huber, Berne, Switzerland (1942)
Thelin, T., Runeson, P., Wohlin, C., Olsson, T., Andersson, C.: Evaluation of usage-based reading-conclusions after three experiments. Empirical Softw. Eng. 9(1–2), 77–110 (2004)
Xu, J., Tian, W., Lv, G., Liu, S., Fan, Y.: 2.5D facial personality prediction based on deep learning. J. Adv. Transp. 2021 (2021)
Yarkoni, T.: Psychoinformatics new horizons at the interface of the psychological and computing sciences. Curr. Dir. Psychol. Sci. 21, 391–397 (2012). https://doi.org/10.1177/0963721412457362
Zhong, B., Hardin, M., Sun, T.: Less effortful thinking leads to more social networking? The associations between the use of social network sites and personality traits. Comput. Hum. Behav. 27(3), 1265–1271 (2011). https://doi.org/10.1016/j.chb.2011.01.008
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chakroun, A., Mefteh, M., Bouassida, N. (2023). A New Approach for the Diagnosis of Children Personality Disorders Based on Semantic Analysis. In: Nguyen, N.T., et al. Advances in Computational Collective Intelligence. ICCCI 2023. Communications in Computer and Information Science, vol 1864. Springer, Cham. https://doi.org/10.1007/978-3-031-41774-0_56
Download citation
DOI: https://doi.org/10.1007/978-3-031-41774-0_56
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-41773-3
Online ISBN: 978-3-031-41774-0
eBook Packages: Computer ScienceComputer Science (R0)