Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improved Condition Handling in CGRAs with Complex Loop Support

  • Conference paper
  • First Online:
Architecture of Computing Systems (ARCS 2023)

Abstract

Coarse Grained Reconfigurable Arrays (CGRA) have become a popular technology to realize compute accelerators. CGRAs can be found in High-Performance systems and also in embedded systems. In order to provide the highest speedup, they need to support conditional statements and nested loops. This requires a management of conditions within the CGRA. This management can be done in different ways. In this contribution, we compare two such concepts and evaluate the impact that these concepts have on the achievable clock frequency, the required resources and the change of schedules. It turns out, that with our new condition management and the accompanying advanced schedule, we can save more than 20% of runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adhi, B., Cortes, C., et al.: Exploration framework for synthesizable CGRAs targeting HPC: initial design and evaluation. In: IPDPSW, pp. 639–646 (2022)

    Google Scholar 

  2. Anderson, J., Beidas, R., Chacko, V., et al.: CGRA-ME: an open-source framework for CGRA architecture and CAD research (invited). In: ASAP, pp. 156–162 (2021)

    Google Scholar 

  3. Chin, S.A., Sakamoto, N., Rui, A., Zhao, J., Kim, J.H., et al.: CGRA-ME: a unified framework for CGRA modelling and exploration. In: ASAP, pp. 184–189 (2017)

    Google Scholar 

  4. Govindaraju, V., Nowatzki, T., et al.: Breaking SIMD shackles with an exposed flexible microarchitecture and the access execute PDG. In: PACT, pp. 341–352 (2013)

    Google Scholar 

  5. Hoy, C.H., Govindarajuz, V., Nowatzki, T., Nagaraju, R., et al.: Performance evaluation of a DySER FPGA prototype system spanning the compiler, microarchitecture, and hardware implementation. In: ISPASS, pp. 203–214 (2015)

    Google Scholar 

  6. Käsgen, P., Messelka, M., Weinhardt, M.: HiPReP: high-performance reconfigurable processor - architecture and compiler. In: FPL, pp. 380–381 (2021)

    Google Scholar 

  7. Mei, B., Vernalde, S., Verkest, D., De Man, H., Lauwereins, R.: ADRES: an architecture with tightly coupled VLIW processor and coarse-grained reconfigurable matrix. In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 61–70. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45234-8_7

    Chapter  Google Scholar 

  8. Mei, B., Vernalde, S., et al.: Exploiting loop-level parallelism on coarse-grained reconfigurable architectures using modulo scheduling. In: DATE, p. 10296 (2003)

    Google Scholar 

  9. Podobas, A., Sano, K., Matsuoka, S.: A template-based framework for exploring coarse-grained reconfigurable architectures. In: ASAP, pp. 1–8 (2020)

    Google Scholar 

  10. Pouchet, L.N.: Polybenchc-4.2.1 beta. https://github.com/MatthiasJReisinger/ PolyBenchC-4.2.1

  11. Wirsch, R., Hochberger, C.: Towards transparent dynamic binary translation from RISC-V to a CGRA. In: Hochberger, C., Bauer, L., Pionteck, T. (eds.) ARCS 2021. LNCS, vol. 12800, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81682-7_8

    Chapter  Google Scholar 

  12. Wolf, D., Engel, A., Ruschke, T., Koch, A., Hochberger, C.: UltraSynth: insights of a CGRA integration into a control engineering environment. J. Signal Process. Syst. 93(5), 463–479 (2021). https://doi.org/10.1007/s11265-021-01641-7

    Article  Google Scholar 

  13. Wolf, D., Jung, L., Ruschke, T., Li, C., Hochberger, C.: AMIDAR project: lessons learned in 15 years of researching adaptive processors. In: ReCoSoC, pp. 1–8 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Wirsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wirsch, R., Hochberger, C. (2023). Improved Condition Handling in CGRAs with Complex Loop Support. In: Goumas, G., Tomforde, S., Brehm, J., Wildermann, S., Pionteck, T. (eds) Architecture of Computing Systems. ARCS 2023. Lecture Notes in Computer Science, vol 13949. Springer, Cham. https://doi.org/10.1007/978-3-031-42785-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42785-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42784-8

  • Online ISBN: 978-3-031-42785-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics