Abstract
In the tourism industry, recommender systems (RS) are information technology (IT) tools used to strengthen competitiveness indicators since allow interaction with tourists, generate mobility in the environment and with other users, and provide helpful information about the destination. However, recommender systems applied to tourism tend to focus mainly on the indicator of destination promotion and management, neglecting other competitiveness indicators that make destinations more attractive, such as tourist safety. This study proposes a model to strengthen various indicators of competitiveness, such as destination management, tourism promotion, marketing, and safety tourism, following a three-step methodology. First, the documentation and analysis of sources in scientific databases to identify the fields of uses of recommender systems in the tourism industry; second selection of techniques and models of recommender systems applied in the tourism industry; third, the construction of a model for the improvement of indicators in a tourist destination. The developed model uses a hybrid recommender system strengthen indicators such as promotion and visitor growth but also provides safe recommendations to users while contributing to the promotion of the tourism offer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Gof, G., Cucculelli, M., Masiero, L.: Fostering tourism destination competitiveness in developing countries: the role of sustainability. J. Clean. Prod. 209 (2019). https://doi.org/10.1016/j.jclepro.2018.10.208
Crouch, G.I.: Destination competitiveness: an analysis of determinant attributes (2011). https://doi.org/10.1177/0047287510362776
Firgo, M., Fritz, O.: Does having the right visitor mix do the job? Applying an econometric shift-share model to regional tourism developments. Ann. Reg. Sci. 58(3), 469–490 (2017). https://doi.org/10.1007/s00168-016-0803-4
World Economic Forum: The Travel & Tourism Competitiveness Report 2019 (2019)
World Economic Forum: Travel & Tourism Development Index 2021: Rebuilding for a Sustainable and Resilient Future. Travel & Tourism Development Index 2021: Rebuilding for a Sustainable and Resilient Future (2021). https://www.weforum.org/reports/travel-and-tourism-development-index-2021/in-full/about-the-travel-tourism-development-index/
Ghorbani, A., Danaei, A., Zargar, S.M., Hematian, H.: Heliyon designing of smart tourism organization (STO) for tourism management: a case study of tourism organizations of South Khorasan province, Iran. Heliyon 6, e01850 (2020). https://doi.org/10.1016/j.heliyon.2019.e01850
Isinkaye, F.O., Folajimi, Y.O., Ojokoh, B.A.: Recommendation systems: principles, methods and evaluation. Egypt. Informatics J. 16(3), 261–273 (2015). https://doi.org/10.1016/j.eij.2015.06.005
Solano-Barliza, A.: Revisión conceptual de sistemas de recomendación y geolocalización aplicados a la seguridad turística Conceptual review of recommendation and geolocation systems applied to tourism security. J. Comput. Electron. Sci. Theory Appl. 2(2), 37–43 (2021)
del Carmen Rodríguez-Hernández, M., Ilarri, S., Trillo, R., Hermoso, R.: Context-aware recommendations using mobile P2P. In: The 15th International Conference, pp. 82–91, October 2017. https://doi.org/10.1145/3151848.3151856
Naser, R.S.: Context aware web service recommender supported by user-based classification, pp. 131–135 (2019)
Kargar, M., Lin, Z.: A socially motivating and environmentally friendly tour recommendation framework for tourist groups. Expert Syst. Appl. 180, 115083 (2021). https://doi.org/10.1016/j.eswa.2021.115083
Unger, M., Tuzhilin, A., Livne, A.: Context-aware recommendations based on deep learning context-aware recommendations based on deep, May 2020. https://doi.org/10.1145/3386243
Boppana, V., Sandhya, P.: Web crawling based context aware recommender system using optimized deep recurrent neural network. J. Big Data (2021). https://doi.org/10.1186/s40537-021-00534-7
Ravi, L., Subramaniyaswamy, V., Vijayakumar, V., Chen, S., Karmel, A., Devarajan, M.: Hybrid location-based recommender system for mobility and travel planning. Mob. Networks Appl. 24(4), 1226–1239 (2019). https://doi.org/10.1007/s11036-019-01260-4
Alrehili, M., Alsubhi, B., Almoghamsi, R., Almutairi, A.-A., Alansari, I.: Tourism mobile application to guide Madinah visitors. In: 2018 1st International Conference on Computer Applications & Information Security (ICCAIS), pp. 1–4, October 2018. https://doi.org/10.1109/CAIS.2018.8442023
Shambour, Q.Y., Abu-Shareha, A.A., Abualhaj, M.M.: A hotel recommender system based on multi-criteria collaborative filtering. Inf. Technol. Control, 390–402 (2022). https://doi.org/10.5755/j01.itc.51.2.30701
Herzog, D., Laß, C., Wörndl, W.: Tourrec - a tourist trip recommender system for individuals and groups. In: RecSys 2018 - 12th ACM Conference on Recommender Systems, pp. 496–497 (2018). https://doi.org/10.1145/3240323.3241612
Al-Ghobari, M., Muneer, A., Fati, S.M.: Location-aware personalized traveler recommender system (lapta) using collaborative filtering KNN. Comput. Mater. Contin. 69(2), 1553–1570 (2021). https://doi.org/10.32604/cmc.2021.016348
Alhijawi, B., Kilani, Y.: A collaborative filtering recommender system using genetic algorithm. Inf. Process. Manag. 57(6), 102310 (2020). https://doi.org/10.1016/j.ipm.2020.102310
Al Fararni, K., Nafis, F., Aghoutane, B., Yahyaouy, A., Riffi, J., Sabri, A.: Hybrid recommender system for tourism based on big data and AI: a conceptual framework. Big Data Min. Anal. 4(1), 47–55 (2021). https://doi.org/10.26599/BDMA.2020.9020015
Lavanya, R., Khokle, T., Maity, A.: Review on hybrid recommender system for mobile devices. In: Hemanth, D., Vadivu, G., Sangeetha, M., Balas, V. (eds.) Artificial Intelligence Techniques for Advanced Computing Applications. LNNS, vol. 130, pp. 477–486. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5329-5_44
Ojagh, S., Malek, M.R., Saeedi, S., Liang, S.: A location-based orientation-aware recommender system using IoT smart devices and social networks. Futur. Gener. Comput. Syst. 108, 97–118 (2020). https://doi.org/10.1016/j.future.2020.02.041
Bahulikar, S., Upadhye, V., Patil, T., Kulkarni, B., Patil, D.: Airline recommendations using a hybrid and location based approach. IEEE Access, 972–977 (2017)
Huang, Z., Lin, X., Liu, H., Zhang, B., Chen, Y., Tang, Y.: Deep representation learning for location-based recommendation. IEEE Access 7(3), 648–658 (2020)
Artemenko, O., Pasichnyk, V., Kunanec, N.: E-tourism mobile location-based hybrid recommender system with context evaluation. In: 2019 IEEE 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), pp. 114–118, October 2019. https://doi.org/10.1109/STC-CSIT.2019.8929775
Gao, K., et al.: Exploiting location-based context for POI recommendation when traveling to a new region. IEEE Access 8, 52404–52412 (2020). https://doi.org/10.1109/ACCESS.2020.2980982
Baral, R., Iyengar, S.S., Zhu, X., Li, T., Sniatala, P.: HiRecS: a hierarchical contextual location recommendation system. IEEE Access 6(5), 1020–1037 (2019)
Amirat, H., Fournier-Viger, P.: Recommendation in LBSN. IEEE Access (2018)
Suguna, R., Sathishkumar, P., Deepa, S.: User location and collaborative based recommender system using Naive Bayes classifier and UIR matrix. IEEE Access, 0–4 (2020)
Abu-Issa, A., et al.: A smart city mobile application for multitype, proactive, and context-aware recommender system (2020)
Abbasi-Moud, Z., Hosseinabadi, S., Kelarestaghi, M., Eshghi, F.: CAFOB: context-aware fuzzy-ontology-based tourism recommendation system. Expert Syst. Appl. 199, 116877 (2022). https://doi.org/10.1016/j.eswa.2022.116877
Ko, H., Lee, S., Park, Y., Choi, A.: A survey of recommendation systems: recommendation. Electronics 11(141), 1–18 (2022)
Hosseini, S., Yin, H., Zhou, X., Sadiq, S., Kangavari, M.R., Cheung, N.M.: Leveraging multi-aspect time-related influence in location recommendation. World Wide Web 22, 1001–1028 (2019)
Fernández-García, A.J., Rodriguez-Echeverria, R., Carlos, J., Perianez, J., Gutiérrez, J.D.: A hybrid multidimensional recommender system for radio programs. Expert Syst. Appl. 198, 116706 (2022). https://doi.org/10.1016/j.eswa.2022.116706
Wayan, N., Yuni, P., Permanasari, A.E., Hidayah, I., Zulfa, M.I.: Collaborative and content-based filtering hybrid method on tourism recommender system to promote less explored areas. Int. J. Appl. Eng. Technol. 4(2), 59–65 (2022)
Maru’ao, M.: Tourism recommender system using hybrid multi- criteria approach tourism recommender system using hybrid multi-criteria approach. IOP Conf. Ser. Earth Environ. Sci. 729 (2021). https://doi.org/10.1088/1755-1315/729/1/012118
Wayan, N., Yuni, P.: Designing a tourism recommendation system using a hybrid method (Collaborative Filtering and Content-Based Filtering), pp. 298–305 (2021)
Kolahkaj, M., Harounabadi, A., Nikravanshalmani, A., Chinipardaz, R.: A hybrid context-aware approach for e-tourism package recommendation based on asymmetric similarity measurement and sequential pattern mining. Electron. Commer. Res. Appl. 42, 100978 (2020). https://doi.org/10.1016/j.elerap.2020.100978
Rehman, F., Khalid, O., Madani, S.: A Comparative Study of Location Based Recommendation Systems (2017)
Yochum, P., Chang, L., Gu, T., Zhu, M.: Linked open data in location-based recommendation system on tourism domain: a survey. IEEE Access, 16409–16439 (2020)
Aliannejadi, M., Crestani, F.: 1 Personalized context-aware point of interest recommendation. ACM Trans. Inf. Syst. 1(1), 1–29 (2017)
Chen, J., Zhang, W., Zhang, P., Ying, P., Niu, K., Zou, M.: Exploiting spatial and temporal for point of interest recommendation. Complexity 2018 (2018)
Cui, G., Luo, J., Wang, X.: Personalized travel route recommendation using collaborative filtering based on GPS trajectories. Int. J. Digit. Earth 8947, 284–307 (2018). https://doi.org/10.1080/17538947.2017.1326535
Ding, R., Chen, Z.: RecNet: a deep neural network for personalized POI recommendation in location-based social networks. Int. J. Geogr. Inf. Sci. 00(00), 1–18 (2018). https://doi.org/10.1080/13658816.2018.1447671
Rios, C., Schiaffino, S., Godoy, D.: A study of neighbour selection strategies for POI recommendation in LBSNs. J. Inf. Sci., 1–16 (2018). https://doi.org/10.1177/0165551518761000
Villegas, N.M., Sánchez, C., Díaz-cely, J., Tamura, G.: Knowledge-base d systems characterizing context-aware recommender systems: a systematic literature review. Knowl.-Based Syst. 140, 173–200 (2018). https://doi.org/10.1016/j.knosys.2017.11.003
Lasmar, E.L., De Paula, F.O., Rosa, R.L., Abrahão, J.I., Rodríguez, D.Z., Member, S.: RsRS: ridesharing recommendation system based on social networks to improve the user’s QoE, 1–13 (2019). https://doi.org/10.1109/TITS.2019.2945793
Li, G., et al.: Group-based recurrent neural networks for POI recommendation 1(1) (2020)
Wang, S., Bhuiyan, Z.A., Peng, H.A.O., Du, B.: Hybrid deep neural networks for friend recommendations in edge computing environment, pp. 10693–10706 (2020)
Forouzandeh, S., Rostami, M., Berahmand, K.: A hybrid method for recommendation systems based on tourism with an evolutionary algorithm and Topsis model. Fuzzy Inf. Eng. 14(1), 26–50 (2022). https://doi.org/10.1080/16168658.2021.2019430
Liu, Y., et al.: Interaction-enhanced and time-aware graph convolutional network for successive point-of-interest recommendation in traveling enterprises. IEEE Trans. Ind. Informatics 19(1), 635–643 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Solano-Barliza, A., Acosta-Coll, M., Escorcia-Gutierrez, J., De-La-Hoz-Franco, E., Arregocés-Julio, I. (2023). Hybrid Recommender System Model for Tourism Industry Competitiveness Increment. In: Saeed, K., Dvorský, J., Nishiuchi, N., Fukumoto, M. (eds) Computer Information Systems and Industrial Management. CISIM 2023. Lecture Notes in Computer Science, vol 14164. Springer, Cham. https://doi.org/10.1007/978-3-031-42823-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-42823-4_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42822-7
Online ISBN: 978-3-031-42823-4
eBook Packages: Computer ScienceComputer Science (R0)