Abstract
Automation of food production is an actively researched domain. One of the areas, where automation is still not progressing significantly is bread making. The process still relies on expert knowledge regarding how to react to procedure changes depending on environmental conditions, quality of the ingredients, etc. In this paper, we propose an ANFIS-based model for changing the mixer speed during the kneading process. Although the recipes usually indicate the time for which the mixing should be done using slow and fast mixing speeds, however, it is the human, who makes the final decision as the mixers differ in terms of the mixing quality, speed, etc. Furthermore, unexpected differences in flour quality or room conditions can impact the time required to mix the ingredients. In the paper, different methods for fuzzy modeling are described and analyzed. The tested models are compared using both generated and real data and the best solution is presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Cappelli, A., Bettaccini, L., Cini, E.: The kneading process: a systematic review of the effects on dough rheology and resulting bread characteristics, including improvement strategies. Trends Food Sci. Technol. (2020). https://doi.org/10.1016/j.tifs.2020.08.008
Dziki, D.: Miesienie ciasta chlebowego - praktyczne uwagi," Mistrz Branży (2014). http://mistrzbranzy.pl/artykuly/pokaz/Miesienie-ciasta-chlebowego-praktyczne-uwagi-2258.html
Hamelman, J.: Bread: a Baker’s Book of Techniques and Recipes. Wiley, Hoboken (2018). ISBN 9781118132715
Luchian, M.I., Stefanov, S., Litovchenko, I., Mihailov, I., Hadjiiski, W.: Simulation of the mixing bread dough process using computational techniques, Technical Report (2013)
Osella, C.A., Robutti, J., Sánchez, H.D., Borrás, F., de la Torre, M.A.: Análisis de componentes principales entre propiedades de masa y productos panificados," Ciencia y Tecnologia Alimentaria (2008). https://doi.org/10.1080/11358120809487633
Gómez, A., Ferrero, C., Calvelo, A., Añón, M.C., Puppo, M.C.: Effect of mixing time on structural and rheological properties of wheat flour dough for breadmaking. Int. J. Food Properties, 2011. https://doi.org/10.1080/10942910903295939
Cappelli, A., Cini, E., Guerrini, L., Masella, P., Angeloni, G., Parenti, A.: Predictive models of the rheological properties and optimal water content in doughs: An application to ancient grain flours with different degrees of refining. J. Cereal Sci. 83(April), 229–235 (2018). https://doi.org/10.1016/j.jcs.2018.09.006
Zadeh, L.: Fuzzy sets, Information and Control (1965). https://doi.org/10.1016/S0019-9958(65)90241-X, https://www.sciencedirect.com/science/article/pii/S001999586590241X
Piegat, A.: Modelowanie i sterowanie rozmyte (1999)
Zadeh, L.A., Klir, G.J., Yuan, B.: Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers. World Scientific, vol. 6 (1996)
Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. (1996). https://doi.org/10.1109/91.493904
Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. (1975). https://doi.org/10.1016/S0020-7373(75)80002-2
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. (1985). https://doi.org/10.1109/TSMC.1985.6313399
Jang, J.S.R., Sun, C.T.: Neuro-fuzzy modeling and control. In: Proceedings of the IEEE (1995). https://doi.org/10.1109/5.364486
Jang, J.S.R.: ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. (1993). https://doi.org/10.1109/21.256541
Mathur, N., Glesk, I., Buis, A.: Comparison of adaptive neuro-fuzzy inference system (ANFIS) and Gaussian processes for machine learning (GPML) algorithms for the prediction of skin temperature in lower limb prostheses. Med. Eng. Phys. (2016). https://doi.org/10.1016/j.medengphy.2016.07.003
Daniszewska -Mazurski, E.: Zastosowanie ANFIS w analizie wyników badań gruntów, Technical Report (2014)
Litwin, J., Łuczak, D., Kosiński, S.: Gra w życie z zastosowaniem logiki rozmytej i ANFIS (2021)
Munteanu, M., Voicu, G., Stefan, E.M., Constantin, G.A., Popa, L., Mihailov, N.: Farinograph characteristics of wheat flour dough and rye flour dough. In: International Symposium ISB-INMA TEH 2015 (2015)
Canja, C.M., Lupu, M., Tăulea, G.: The influence of kneading time on bread dough quality, Bulletin of the Transilvania University of Brasov, Series II: Forestry. Wood Industry, Agricultural Food Engineering (2014)
Calderón-Domínguez, G., Vera-Domínguez, M., Farrera-Rebollo, R.: Rheological changes of dough and bread quality prepared from a sweet dough: effect of temperature and mixing time. Int. J. Food Prop. (2004). https://doi.org/10.1081/JFP-120025393
Cauvain, S.: Speciality fermented goods. In: Technology of Breadmaking. Springer, Cham, pp. 253–277 (2015). https://doi.org/10.1007/978-3-319-14687-4_9
Tyl, C., Sadler, G.D.: pH and titratable acidity. In: Nielsen, S.S. (ed) Food analysis. Springer, Cham, pp. 389–406 (2017). https://doi.org/10.1007/978-3-319-45776-5_22
Acknowledgments
The work has been supported partially by founds of the Department of Computer Architecture, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology and the project POIR.01.01.01-00-1449/19-00 entitled “Opracowanie systemu, dedykowanego branży piekarniczej, pełniącego funkcje nadzorowania i sterowania powtarzalnym procesem produkcji ciasta”. The Authors would like to thank Joanna Woźna for her help in implementation of the models.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Boiński, T., Szymański, J. (2023). Optimization of Bread Production Using Neuro-Fuzzy Modelling. In: Saeed, K., Dvorský, J., Nishiuchi, N., Fukumoto, M. (eds) Computer Information Systems and Industrial Management. CISIM 2023. Lecture Notes in Computer Science, vol 14164. Springer, Cham. https://doi.org/10.1007/978-3-031-42823-4_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-42823-4_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42822-7
Online ISBN: 978-3-031-42823-4
eBook Packages: Computer ScienceComputer Science (R0)