Abstract
The federated paradigm has made possible the development of techniques capable of solving advanced problems in the healthcare field through the protection of data privacy. However, most existing research is centered around supervised methods and real world data tends to be unevenly distributed and scarcely labelled. This paper aims to provide an overview of existing unsupervised and semi-supervised methods implemented in a federated healthcare setting in order to identify state of the art methods and detect current challenges and future lines of research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
McMahan, H.B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-Efficient learning of deep networks from decentralized data (2016). arXiv. 1602.05629
Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 12 (2019)
Pfitzner, B., Steckhan, N., Bert Arnrich, B.: Federated learning in a medical context: a systematic literature review. ACM Trans. Internet Technol. 21(2), 31 (2021)
Jin, Y., Wei, X., Liu, Y.: Qiang Yang. Towards utilizing unlabeled data in federated learning, A survey and prospective (2020)
Prayitno.: A systematic review of federated learning in the healthcare area: from the perspective of data properties and applications. Appl. Sci. 11, 11191 (2021). https://doi.org/10.3390/app112311191
Fan, C., Hue, J., Huang, J.: Private semi-supervised federated learning. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022)
Zhang, L., Shen, B., Barnawi, A., Xi, S., Kumar, N., Wu, Y.: FedDPGAN: Federated differentially private generative adversarial networks framework for the detection of COVID-19 pneumonia. Inf. Syst, Front (2021)
Wu, Q., Chen, X., Zhou, Z., Zhang, J.: FedHome: cloud-edge based personalized federated learning for in-home health monitoring. IEEE Trans. Mobile Comput. 21, 2818–2832 (2020)
Yang, D., Xu, Z., Li, W., Myronenko, A., Roth, H.R., Harmon, S., Xu, S., Turkbey, B., Turkbey, E., Wang, X., et al.: Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy. Japan. Med. Image Anal. 70, 101992 (2021)
Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-IID data (2018), arXiv:1806.00582
McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the Artificial Intelligence and Statistics Conference, Fort Lauderdale, FL, USA, pp. 1273–1282 (2017)
Huang, L., Shea, A.L., Qian, H., Masurkar, A., Deng, H., Liu, D.: Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. J. Biomed. Inform. 99, 103291 (2019)
Chen, Y., Qin, X., Wang, J., Yu, C., Gao, W.: FedHealth: A federated transfer learning framework for wearable healthcare. IEEE Intell. Syst. 35, 83–93 (2020)
Dennis, D.K., Li, T., Smith, V.: Heterogeneity for the Win: one-shot federated clustering. In: Proceedings of the 38th International Conference on Machine Learning, PMLR 139 (2021)
Huang, L., Yin, Y., Fu, Z., Zhang, S., Deng, H., Liu, D.: LoAdaBoost: Loss-based AdaBoost federated machine learning with reduced computational complexity on IID and non-IID intensive care data. PLoS ONE 15, e0230706 (2020)
Tran, K.; Bøtker, J.P., Aframian, A., Memarzadeh, K.: Artificial intelligence for medical imaging. In: Artificial Intelligence in Healthcare; Elsevier: Amsterdam, The Netherlands, pp. 143–162 (2020)
Cohen, I., Cozman, F.G., Sebe, N., Cirelo, M.C., Huang, T.S.: Semisupervised learning of classifiers: theory, algorithms, and their application to human-computer interaction. IEEE Trans. Pattern Anal. Mach. Intell. 26(12), 1553–1566 (2004)
Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semisupervised learning with deep generative models. Adv. Neural Inf. Process. Syst. 27, 3581–3589 (2014)
Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)
Tarvainen, A., Valpola, H.: Mean teachers are better role models: weightaveraged consistency targets improve semi-supervised deep learning results. Adv. Neural Inf. Process. Syst. 30, 1195–1204 (2017)
Berthelot, D., et al.: A holistic approach to semi-supervised learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alche-Buc, E. Fox, and R. Garnett, editors, Adv. Neural Inf. Process. Syst.32, 5049–5059. Curran Associates Inc (2019)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Chen, D.-D.,Wang, W., Gao, W., Zhi-Hua Zhou, Z.-H.: Tri-net for semi-supervised deep learning. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 2014–2020. AAAI Press (2018)
Solatidehkordi, Z., Zualkernan, I.: Survey on Recent Trends in Medical Image Classification Using Semi-Supervised Learning. Appl. Sci. 12, 12094 (2022). https://doi.org/10.3390/app122312094
Liang, X., Lin, Y., Fu, H., Zhu, L., Li, X.: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10154–10163 (2022)
Yan, Z., Guoliang, L., Jianhua, F.: A survey on entity alignment of knowledge base. J. Comput. Res. Dev. 53(1), 165–192 (2016). https://doi.org/10.7544/issn1000-1239.2016.20150661
Roy, A.G., Siddiqui, S., Pölsterl, S., Navab, N., Wachinger, C.: BrainTorrent: a Peer-to-Peer Environment for Decentralized Federated Learning (2019). https://doi.org/10.48550/arXiv.1905.06731
Singh, S., Rathore, S., Alfarraj, O., Tolba, A., Yoon, B.: A framework for privacy-preservation of IoT healthcare data using Federated Learning and blockchain technology. Futur. Gener. Comput. Syst. 129, 380–388 (2022)
Rizk, E., Sayed, A.H.: A graph federated architecture with privacy preserving learning. In: 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information Theory (1982)
Dhillon, I.S., Modha, D.S.: A data-clustering algorithm on distributed memory multiprocessors. In: Large-Scale Parallel Data Mining (2002)
Tasoulis, D.K. Vrahatis, M.N.: Unsupervised distributed clustering. In: Parallel and Distributed Computing and Networks (2004)
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al.: A densitybased algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery & Data Mining (1996)
Kargupta, H., Huang, W., Sivakumar, K., Johnson, E.: Distributed clustering using collective principal component analysis. Knowl. Inf. Syst. 32, 422–448 (2001) https://doi.org/10.1007/PL00011677
Feldman, D., Sugaya, A., Rus, D.: An effective coreset compression algorithm for large scale sensor networks. In: International Conference on Information Processing in Sensor Networks (2012)
Bachem, O., Lucic, M., Krause, A.: Scalable k-means clustering via lightweight coresets. In: International Conference on Knowledge Discovery & Data Mining (2018)
Stallmann, M., Wilbik, A.: Towards Federated Clustering: A Federated Fuzzy c-Means Algorithm (FFCM) (2022). arXiv:2201.07316v1
Ghosh, A., Chung, J., Yin, D., Ramchandran, K.: An Efficient Framework for Clustered Federated Learning. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 19586–19597. Curran Associates Inc (2020)
Sattler, F., Muller, K.-R., Samek, W.: Clustered federated learning: model-agnostic distributed multitask optimization under privacy constraints. IEEE Trans. Neural Netw. Learn. Syst. 32, 3710–3722 (2020)
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), Article 15 (2009). https://doi.org/10.1145/1541880.1541882
Ukil, A., Bandyoapdhyay, S., Puri, C., A. Pal, A.: IoT Healthcare Analytics: The Importance of Anomaly Detection. In: 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), Crans-Montana, Switzerland, pp. 994–997 (2016), https://doi.org/10.1109/AINA.2016.158
Siniosoglou, I., et al.: Federated intrusion detection in NG-IoT healthcare systems: an adversarial approach. In: ICC 2021 - IEEE International Conference on Communications (2021)
Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 8th IEEE International Conference on Data Mining, Pisa, Italy. IEEE (2008)
Cavallin, F., Mayer, R.: Anomaly Detection from Distributed Data Sources via Federated Learning. In: Barolli, L., Hussain, F., Enokido, T. (eds.) AINA 2022. LNNS, vol. 450, pp. 317–328. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99587-4_27
Bercea, C.I., Wiestler, B., Rueckert, D., et al.: Federated disentangled representation learning for unsupervised brain anomaly detection. Nat. Mach. Intell. 4, 685–695 (2022). https://doi.org/10.1038/s42256-022-00515-2
Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. Med. Image Anal. 69, 101952 (2021)
Grammenos, A., Mendoza Smith, R., Crowcroft, J., Mascolo, C.: Federated principal component analysis. Adv. Neural. Inf. Process. Syst. 33, 6453–6464 (2020)
Cui, W., Zhao, Y., Xu, J., Cheng, H.: Federated sufficient dimension reduction through high-dimensional sparse sliced inverse regression (2023). arXiv preprint arXiv:2301.09500
Chai, D., Wang, L., Fu, L., Zhang, J., Chen, K., Yang, Q.: . Federated singular vector decomposition. arXiv e-prints, https://arxiv.org/abs/2105.08925 (2021)
Islam, T. U., Ghasemi, R., Mohammed, N.: Privacy-preserving federated learning model for healthcare data. In: 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 0281–0287). IEEE (2022)
Wei, K., et al.: Vertical federated learning: Challenges, methodologies and experiments. arXiv preprint arXiv:2202.04309 (2022)
Yoo, J. H., et .: Personalized federated learning with clustering: non-IID heart rate variability data application. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1046–1051. IEEE (2021)
Molina, C., Prados-Suarez, B., Martinez-Sanchez, B.: Federated Mining of Interesting Association Rules Over EHRs. In: Applying the FAIR Principles to Accelerate Health Research in Europe in the Post COVID-19 Era, pp. 3–7. IOS Press (2021)
Sun, L., Wu, J.: A scalable and transferable federated learning system for classifying healthcare sensor data. IEEE J. Biomed. Health Inf. 27, 866–877 (2022)
Domadiya, N., Rao, U.P.: Privacy preserving distributed association rule mining approach on vertically partitioned healthcare data. Procedia Comput. Sci. 148, 303–312 (2019)
Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. IEEE Trans. Knowl. Data Eng. 16(9), 1026–1037 (2004)
Tassa, T.: Secure mining of association rules in horizontally distributed databases. IEEE Trans. Knowl. Data Eng. 26(4), 970–983 (2013)
Acknowledgements
We would like to acknowledge support for this work from the Grant PID2021-123960OB-I00 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Paños-Basterra, J., Ruiz, M.D., Martin-Bautista, M.J. (2023). Federated Learning in Healthcare with Unsupervised and Semi-Supervised Methods. In: Larsen, H.L., Martin-Bautista, M.J., Ruiz, M.D., Andreasen, T., Bordogna, G., De Tré, G. (eds) Flexible Query Answering Systems. FQAS 2023. Lecture Notes in Computer Science(), vol 14113. Springer, Cham. https://doi.org/10.1007/978-3-031-42935-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-42935-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42934-7
Online ISBN: 978-3-031-42935-4
eBook Packages: Computer ScienceComputer Science (R0)