Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Not with My Name! Inferring Artists’ Names of Input Strings Employed by Diffusion Models

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Abstract

Diffusion Models (DM) are highly effective at generating realistic, high-quality images. However, these models lack creativity and merely compose outputs based on their training data, guided by a textual input provided at creation time. Is it acceptable to generate images reminiscent of an artist, employing his name as input? This imply that if the DM is able to replicate an artist’s work then it was trained on some or all of his artworks thus violating copyright. In this paper, a preliminary study to infer the probability of use of an artist’s name in the input string of a generated image is presented. To this aim we focused only on images generated by the famous DALL-E 2 and collected images (both original and generated) of five renowned artists. Finally, a dedicated Siamese Neural Network was employed to have a first kind of probability. Experimental results demonstrate that our approach is an optimal starting point and can be employed as a prior for predicting a complete input string of an investigated image. Dataset and code are available at: https://github.com/ictlab-unict/not-with-my-name.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.theverge.com/2023/1/16/23557098/generative-ai-art-copyright-legal-lawsuit-stable-diffusion-midjourney-deviantart.

  2. 2.

    https://www.theverge.com/23444685/generative-ai-copyright-infringement-legal-fair-use-training-data.

  3. 3.

    https://www.oreilly.com/radar/what-does-copyright-say-about-generative-models/.

  4. 4.

    https://www.mlq.ai/copyright-infringement-generative-ai-this-week-in-ai/.

  5. 5.

    https://www.kaggle.com/competitions/stable-diffusion-image-to-prompts/data.

  6. 6.

    www.wikiart.org.

References

  1. Abbott, R.: Intellectual property and artificial intelligence: an introduction. In: Research Handbook on Intellectual Property and Artificial Intelligence, pp. 2–21. Edward Elgar Publishing (2022)

    Google Scholar 

  2. Battiato, S., Giudice, O., Guarnera, F., Puglisi, G.: CNN-based first quantization estimation of double compressed jpeg images. J. Vis. Commun. Image Representation 89, 103635 (2022)

    Article  Google Scholar 

  3. Battiato, S., Giudice, O., Paratore, A.: Multimedia forensics: discovering the history of multimedia contents. In: Proceedings of the 17th International Conference on Computer Systems and Technologies 2016, pp. 5–16 (2016)

    Google Scholar 

  4. Berlemont, S., Lefebvre, G., Duffner, S., Garcia, C.: Class-balanced Siamese neural networks. Neurocomputing 273, 47–56 (2018)

    Article  Google Scholar 

  5. Carlini, N., et al.: Extracting training data from diffusion models. arXiv preprint arXiv:2301.13188 (2023)

  6. Corvi, R., Cozzolino, D., Zingarini, G., Poggi, G., Nagano, K., Verdoliva, L.: On the detection of synthetic images generated by diffusion models. arXiv preprint arXiv:2211.00680 (2022)

  7. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. Adv. Neural Inf. Process. Syst. 34, 8780–8794 (2021)

    Google Scholar 

  8. Gillotte, J.L.: Copyright infringement in AI-generated artworks. UC Davis L. Rev. 53, 2655 (2019)

    Google Scholar 

  9. Giudice, O., Guarnera, L., Battiato, S.: Fighting Deepfakes by detecting GAN DCT anomalies. J. Imaging 7(8), 128 (2021). https://doi.org/10.3390/jimaging7080128, https://www.mdpi.com/2313-433X/7/8/128

  10. Giudice, O., Guarnera, L., Paratore, A.B., Farinella, G.M., Battiato, S.: Siamese ballistics neural network. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 4045–4049. IEEE (2019)

    Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. Guarnera, F., Allegra, D., Giudice, O., Stanco, F., Battiato, S.: A new study on wood fibers textures: documents authentication through LBP fingerprint. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 4594–4598. IEEE (2019)

    Google Scholar 

  13. Guarnera, L., Giudice, O., Battiato, S.: Fighting Deepfake by exposing the convolutional traces on images. IEEE Access 8, 165085–165098 (2020). https://doi.org/10.1109/ACCESS.2020.3023037

    Article  Google Scholar 

  14. Guarnera, L., et al.: The face deepfake detection challenge. J. Imaging 8(10), 263 (2022)

    Article  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Hristov, K.: Artificial intelligence and the copyright dilemma. Idea 57, 431 (2016)

    Google Scholar 

  17. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 (2022)

  18. Sha, Z., Li, Z., Yu, N., Zhang, Y.: DE-FAKE: detection and attribution of fake images generated by text-to-image diffusion models. arXiv preprint arXiv:2210.06998 (2022)

  19. Shan, S., Cryan, J., Wenger, E., Zheng, H., Hanocka, R., Zhao, B.Y.: Glaze: protecting artists from style mimicry by text-to-image models. arXiv preprint arXiv:2302.04222 (2023)

  20. Vyas, N., Kakade, S., Barak, B.: Provable copyright protection for generative models. arXiv preprint arXiv:2302.10870 (2023)

  21. Wang, F., Kang, L., Li, Y.: Sketch-based 3d shape retrieval using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1875–1883 (2015)

    Google Scholar 

  22. Wang, R., et al.: Fakespotter: a simple yet robust baseline for spotting AI-synthesized fake faces. arXiv preprint arXiv:1909.06122 (2019)

  23. Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: CNN-generated images are surprisingly easy to spot... for now. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8695–8704 (2020)

    Google Scholar 

  24. Zhang, X., Karaman, S., Chang, S.F.: Detecting and simulating artifacts in GAN fake images. In: 2019 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2019)

    Google Scholar 

  25. Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Giudice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leotta, R., Giudice, O., Guarnera, L., Battiato, S. (2023). Not with My Name! Inferring Artists’ Names of Input Strings Employed by Diffusion Models. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14233. Springer, Cham. https://doi.org/10.1007/978-3-031-43148-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43148-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43147-0

  • Online ISBN: 978-3-031-43148-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics