Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bayesian Networks as Approximations of Biochemical Networks

  • Conference paper
  • First Online:
Computer Performance Engineering and Stochastic Modelling (EPEW 2023, ASMTA 2023)

Abstract

Biochemical networks are usually modeled by Ordinary Differential Equations (ODEs) that describe time evolution of the concentrations of the interacting (biochemical) species for specific initial concentrations and certain values of the interaction rates. The uncertainty in the measurements of the model parameters (i.e. interaction rates) and the concentrations (i.e. state variables) is not an uncommon occurrence due to biological variability and noise. So, there is a great need to predict the evolution of the species for some intervals or probability distributions instead of specific initial conditions and parameter values. To this end, one can employ either phase portrait method together with bifurcation analysis as a dynamical system approach, or Dynamical Bayesian Networks (DBNs) in a probabilistic domain. The first approach is restricted to the case of a few number of parameters, while DBNs have recently been used for large biochemical networks. In this paper, we show that time-homogeneous ODE parameters can be efficiently estimated with Bayesian Networks. The accuracy and computation time of our approach is compared to two-slice time-invariant DBNs that have already been used for this purpose. The efficiency of our approach is demonstrated on two toy examples and the EGF-NGF signaling pathway.

This work was financed by the join ANR-JST project CyPhAI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bortolussi, L., Palmieri, L.: Deep abstractions of chemical reaction networks. In: Češka, M., Šafránek, D. (eds.) CMSB 2018. LNCS, vol. 11095, pp. 21–38. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99429-1_2

    Chapter  Google Scholar 

  2. Boyen, X., Koller, D.: Approximate learning of dynamic models. In: Advances in Neural Information Processing Systems, vol. 11(NIPS 1998), pp. 396–402. MIT Press, Cambridge (1999)

    Google Scholar 

  3. Brown, K.S., et al.: The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys. Biol. 1(3), 184 (2004)

    Article  Google Scholar 

  4. Butcher, J.C.: A history of Runge-Kutta methods. Appl. Numer. Math. 20(3), 247–260 (1996)

    Google Scholar 

  5. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Hoboken (2016)

    Book  MATH  Google Scholar 

  6. Deuflhard, P., Hairer, E., Zugck, J.: One-step and extrapolation methods for differential-algebraic systems. Numer. Math. 51, 501–516 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Durrett, R.: Probability: Theory and Examples, vol. 49. Cambridge University Press, Cambridge (2019)

    Book  MATH  Google Scholar 

  8. Faure, H., Lemieux, C.: Generalized Halton sequences in 2008: a comparative study. ACM Trans. Model. Comput. Simul. (TOMACS) 19(4), 1–31 (2009)

    Article  MATH  Google Scholar 

  9. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  10. Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, Cambridge (2012)

    MATH  Google Scholar 

  11. Huang, C., Darwiche, A.: Inference in belief networks: a procedural guide. Int. J. Approx. Reason. 15(3), 225–263 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liebermeister, K.: Biochemical networks with uncertain parameters. Syst. Biol. 152, 97–107 (2005)

    Article  MATH  Google Scholar 

  13. Liu, B., et al.: Approximate probabilistic analysis of biopathway dynamics. Bioinformatics 28, 1508–1516 (2012)

    Article  Google Scholar 

  14. Liu, B., Hsu, D., Thiagarajan, P.S.: Probabilistic approximations of ODEs based bio-pathway dynamics. Theor. Comput. Sci. 412(21), 2188–2206 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Matsuno, H., Fujita, S., Doi, A., Nagasaki, M., Miyano, S.: Towards biopathway modeling and simulation. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 3–22. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44919-1_2

    Chapter  Google Scholar 

  16. Murphy, K., et al.: The Bayes net toolbox for Matlab. Comput. Sci. Stat. 33(2), 1024–1034 (2001)

    Google Scholar 

  17. Murphy, K., Weiss, Y.: The factored frontier algorithm for approximate inference in DBNs. In Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pp. 378–385 (2001)

    Google Scholar 

  18. Murphy, K.P.: Probabilistic Machine Learning: An Introduction. MIT Press, Cambridge (2022)

    MATH  Google Scholar 

  19. Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods for stochastic biochemical kinetics-a tutorial review. J. Phys. A: Math. Theor. 50(9), 093001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Skilling, J.: Bayesian solution of ordinary differential equations. Maximum Entropy Bayesian Meth. Seattle 1991, 23–37 (1992)

    Article  MATH  Google Scholar 

  21. Trivedi, K.: Probability and Statistics with Reliability, Queuing and Computer Science Applications. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  22. Tronarp, F., Kersting, H., Särkkä, S., Hennig, P.: Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspective. Stat. Comput. 29, 1297–1315 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Le Coënt .

Editor information

Editors and Affiliations

Appendix

Appendix

$$\begin{aligned} \begin{aligned}&\dot{x}_1=-k_1*x_1*x_3+k_2*x_4 \\&\dot{x}_2=-k_3*x_2*x_5+k_4*x_6 \\&\dot{x}_3=-k_1*x_1*x_3+k_2*x_4 \\&\dot{x}_4=k_1*x_1*x_3-k_2*x_4 \\&\dot{x}_5=-k_3*x_2*x_5+k_4*x_6 \\&\dot{x}_6=k_3*x_2*x_5-k_4*x_6 \\&\dot{x}_7=k_9*x_{10}*x_8/(x_8+k_{10})-k_5*x_4*x_7/(x_7+k_6)-k_7*x_6*x_7/(x_7+k_8) \\&\dot{x}_8=-k_9*x_{10}*x_8/(x_8+k_{10})+k_5*x_4*x_7/(x_7+k_6)+k_7*x_6*x_7/(x_7+k_8) \\&\dot{x}_9=-k_{27}*x_{21}*x_9/(x_9+k_{28}) \\&\dot{x}_{10}=k_{27}*x_{21}*x_9/(x_9+k_{28}) \\&\dot{x}_{11}=-k_{11}*x_8*x_{11}/(x_{11}+k_{12})+k_{13}*x_{13}*x_{12}/(x_{12}+k_{14}) \\&\dot{x}_{12}=k_{11}*x_8*x_{11}/(x_{11}+k_{12})-k_{13}*x_{13}*x_{12}/(x_{12}+k_{14}) \\&\dot{x}_{13}=0 \\&\dot{x}_{14}=-k_{15}*x_{12}*x_{14}/(x_{14}+k_{16})+k_{45}*x_{32}*x_{15}/(x_{15}+k_{46}) \\&\quad +k_{35}*x_{25}*x_{15}/(x_{15}+k_{36}) \\&\dot{x}_{15}=k_{15}*x_{12}*x_{14}/(x_{14}+k_{16})-k_{45}*x_{32}*x_{15}/(x_{15}+k_{46}) \\ {}&\quad -k_{35}*x_{25}*x_{15}/(x_{15}+k_{36}) \\&\dot{x}_{16}=-k_{43}*x_{29}*x_{16}/(x_{16}+k_{44})+k_{47}*x_{32}*x_{17}/(x_{17}+k_{20}) \\&\dot{x}_{17}=k_{43}*x_{29}*x_{16}/(x_{16}+k_{44})-k_{47}*x_{32}*x_{17}/(x_{17}+k_{20}) \\&\dot{x}_{18}=-k_{17}*x_{15}*x_{18}/(x_{18}+k_{18})-k_{19}*x_{17}*x_{18}/(x_{18}+k_{48}) \\ {}&\quad +k_{21}*x_{31}*x_{19}/(x_{19}+k_{22}) \\&\dot{x}_{19}=k_{17}*x_{15}*x_{18}/(x_{18}+k_{18})+k_{19}*x_{17}*x_{18}/(x_{18}+k_{48}) \\&\quad -k_{21}*x_{31}*x_{19}/(x_{19}+k_{22}) \\&\dot{x}_{20}=-k_{23}*x_{19}*x_{20}/(x_{20}+k_{24})+k_{25}*x_{31}*x_{21}/(x_{21}+k_{26}) \\&\dot{x}_{21}=k_{23}*x_{19}*x_{20}/(x_{20}+k_{24})-k_{25}*x_{31}*x_{21}/(x_{21}+k_{26}) \\&\dot{x}_{22}=-k_{29}*x_4*x_{22}/(x_{22}+k_{30})-k_{31}*x_{12}*x_{22}/(x_{22}+k_{32}) \\&\dot{x}_{23}=k_{29}*x_4*x_{22}/(x_{22}+k_{30})+k_{31}*x_{12}*x_{22}/(x_{22}+k_{32}) \\&\dot{x}_{24}=-k_{33}*x_{23}*x_{24}/(x_{24}+k_{34}) \\&\dot{x}_{25}=k_{33}*x_{23}*x_{24}/(x_{24}+k_{34}) \\&\dot{x}_{26}=-k_{37}*x_6*x_{26}/(x_{26}+k_{38}) \\&\dot{x}_{27}=k_{37}*x_6*x_{26}/(x_{26}+k_{38}) \\&\dot{x}_{28}=-k_{39}*x_{27}*x_{28}/(x_{28}+k_{40})+k_{41}*x_{30}*x_{29}/(x_{29}+k_{42}) \\&\dot{x}_{29}=k_{39}*x_{27}*x_{28}/(x_{28}+k_{40})-k_{41}*x_{30}*x_{29}/(x_{29}+k_{42}) \\&\dot{x}_{30}=0 \\&\dot{x}_{31}=0 \\&\dot{x}_{32}=0 \end{aligned} \end{aligned}$$
(7)
Fig. 3.
figure 3

The HFPN model of the EGF-NGF signaling pathway [14]. The HFPN representation of chemical networks is detailed in [15]. In a few words, circles (places) represent species, squares (transitions) represent reactions, and arrows represent how the species are involved in the reactions, dashed arrows mean that the species are not consumed (like in enzyme reactions).

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le Coënt, A., Barbot, B., Pekergin, N., Güzeliş, C. (2023). Bayesian Networks as Approximations of Biochemical Networks. In: Iacono, M., Scarpa, M., Barbierato, E., Serrano, S., Cerotti, D., Longo, F. (eds) Computer Performance Engineering and Stochastic Modelling. EPEW ASMTA 2023 2023. Lecture Notes in Computer Science, vol 14231. Springer, Cham. https://doi.org/10.1007/978-3-031-43185-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43185-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43184-5

  • Online ISBN: 978-3-031-43185-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics