Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient Hyperdimensional Computing

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14170))

Abstract

Hyperdimensional computing (HDC) is a method to perform classification that uses binary vectors with high dimensions and the majority rule. This approach has the potential to be energy-efficient and hence deemed suitable for resource-limited platforms due to its simplicity and massive parallelism. However, in order to achieve high accuracy, HDC sometimes uses hypervectors with tens of thousands of dimensions. This potentially negates its efficiency advantage. In this paper, we examine the necessity of such high dimensions and conduct a detailed theoretical analysis of the relationship between hypervector dimensions and accuracy. Our results demonstrate that as the dimension of the hypervectors increases, the worst-case/average-case HDC prediction accuracy with the majority rule decreases. Building on this insight, we develop HDC models that use binary hypervectors with dimensions orders of magnitude lower than those of state-of-the-art HDC models while maintaining equivalent or even improved accuracy and efficiency. For instance, on the MNIST dataset, we achieve 91.12% HDC accuracy in image classification with a dimension of only 64. Our methods perform operations that are only 0.35% of other HDC models with dimensions of 10,000. Furthermore, we evaluate our methods on ISOLET, UCI-HAR, and Fashion-MNIST datasets and investigate the limits of HDC computing https://github.com/zhangluyan9/EffHDC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/zhangluyan9/EffHDC/blob/main/Appendix.pdf.

  2. 2.

    http://yann.lecun.com/exdb/mnist/.

  3. 3.

    https://github.com/zalandoresearch/fashion-mnist.

  4. 4.

    https://archive.ics.uci.edu/ml/datasets/isolet.

  5. 5.

    https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+usingsmartphones.

References

  1. Asgarinejad, F., Thomas, A., Rosing, T.: Detection of epileptic seizures from surface EEG using hyperdimensional computing. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 536–540. IEEE (2020)

    Google Scholar 

  2. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation (2013)

    Google Scholar 

  3. Chuang, Y.C., Chang, C.Y., Wu, A.Y.A.: Dynamic hyperdimensional computing for improving accuracy-energy efficiency trade-offs. In: 2020 IEEE Workshop on Signal Processing Systems (SiPS), pp. 1–5. IEEE (2020)

    Google Scholar 

  4. Duan, S., Liu, Y., Ren, S., Xu, X.: LeHDC: learning-based hyperdimensional computing classifier. arXiv preprint arXiv:2203.09680 (2022)

  5. Frady, E.P., Kleyko, D., Kymn, C.J., Olshausen, B.A., Sommer, F.T.: Computing on functions using randomized vector representations. arXiv preprint arXiv:2109.03429 (2021)

  6. Hassan, E., Halawani, Y., Mohammad, B., Saleh, H.: Hyper-dimensional computing challenges and opportunities for AI applications. IEEE Access 10, 97651–97664 (2021)

    Article  Google Scholar 

  7. Hsieh, C.Y., Chuang, Y.C., Wu, A.Y.A.: FL-HDC: hyperdimensional computing design for the application of federated learning. In: 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 1–5. IEEE (2021)

    Google Scholar 

  8. Imani, M., et al.: QuantHD: a quantization framework for hyperdimensional computing. IEEE Trans. Comput.-Aided Des. Integr. Circu. Syst. 39(10), 2268–2278 (2019)

    Article  Google Scholar 

  9. Imani, M., et al.: A framework for collaborative learning in secure high-dimensional space. In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pp. 435–446. IEEE (2019)

    Google Scholar 

  10. Imani, M., Messerly, J., Wu, F., Pi, W., Rosing, T.: A binary learning framework for hyperdimensional computing. In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 126–131. IEEE (2019)

    Google Scholar 

  11. Imani, M., et al.: SearcHD: a memory-centric hyperdimensional computing with stochastic training. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 39(10), 2422–2433 (2019)

    Article  Google Scholar 

  12. Neubert, P., Schubert, S., Protzel, P.: An introduction to hyperdimensional computing for robotics. KI-Künstliche Intelligenz 33(4), 319–330 (2019)

    Article  Google Scholar 

  13. Rahimi, A., Kanerva, P., Rabaey, J.M.: A robust and energy-efficient classifier using brain-inspired hyperdimensional computing. In: Proceedings of the 2016 International Symposium on Low Power Electronics and Design, pp. 64–69 (2016)

    Google Scholar 

  14. Salamat, S., Imani, M., Khaleghi, B., Rosing, T.: F5-HD: fast flexible FPGA-based framework for refreshing hyperdimensional computing. In: Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 53–62 (2019)

    Google Scholar 

  15. Schlegel, K., Neubert, P., Protzel, P.: A comparison of vector symbolic architectures. Artif. Intell. Rev. 55(6), 4523–4555 (2022)

    Article  Google Scholar 

  16. Schmuck, M., Benini, L., Rahimi, A.: Hardware optimizations of dense binary hyperdimensional computing: Rematerialization of hypervectors, binarized bundling, and combinational associative memory. ACM J. Emerg. Technol. Comput. Syst. (JETC) 15(4), 1–25 (2019)

    Article  Google Scholar 

  17. Tax, D.M., Duin, R.P.: Using two-class classifiers for multiclass classification. In: 2002 International Conference on Pattern Recognition, vol. 2, pp. 124–127. IEEE (2002)

    Google Scholar 

  18. Thomas, A., Dasgupta, S., Rosing, T.: Theoretical foundations of hyperdimensional computing. arXiv preprint arXiv:2010.07426 (2020)

  19. Yu, T., Zhang, Y., Zhang, Z., De Sa, C.: Understanding hyperdimensional computing for parallel single-pass learning. arXiv preprint arXiv:2202.04805 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shida Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, Z., Wang, S., Tang, K., Wong, WF. (2023). Efficient Hyperdimensional Computing. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14170. Springer, Cham. https://doi.org/10.1007/978-3-031-43415-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43415-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43414-3

  • Online ISBN: 978-3-031-43415-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics