Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Match-And-Deform: Time Series Domain Adaptation Through Optimal Transport and Temporal Alignment

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Abstract

While large volumes of unlabeled data are usually available, associated labels are often scarce. The unsupervised domain adaptation problem aims at exploiting labels from a source domain to classify data from a related, yet different, target domain. When time series are at stake, new difficulties arise as temporal shifts may appear in addition to the standard feature distribution shift. In this paper, we introduce the Match-And-Deform (MAD) approach that aims at finding correspondences between the source and target time series while allowing temporal distortions. The associated optimization problem simultaneously aligns the series thanks to an optimal transport loss and the time stamps through dynamic time warping. When embedded into a deep neural network, MAD helps learning new representations of time series that both align the domains and maximize the discriminative power of the network. Empirical studies on benchmark datasets and remote sensing data demonstrate that MAD makes meaningful sample-to-sample pairing and time shift estimation, reaching similar or better classification performance than state-of-the-art deep time series domain adaptation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Code, supplementary material and datasets are available at https://github.com/rtavenar/MatchAndDeform.

  2. 2.

    https://theia-ide.org/.

  3. 3.

    https://geoservices.ign.fr/rpg.

References

  1. Cohen, S., Luise, G., Terenin, A., Amos, B., Deisenroth, M.: Aligning time series on incomparable spaces. In: International Conference on Artificial Intelligence and Statistics, pp. 1036–1044 (2021)

    Google Scholar 

  2. Courty, N., Flamary, R., Tuia, D., Rakotomamonjy, A.: Optimal transport for domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1853–1865 (2016)

    Article  Google Scholar 

  3. Courty, N., Flamary, R., Habrard, A., Rakotomamonjy, A.: Joint distribution optimal transportation for domain adaptation. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  4. Damodaran, B.B., Kellenberger, B., Flamary, R., Tuia, D., Courty, N.: DeepJDOT: deep joint distribution optimal transport for unsupervised domain adaptation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 467–483. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_28

    Chapter  Google Scholar 

  5. Dua, D., Graff, C.: UCI machine learning repository (2017). https://archive.ics.uci.edu/ml

  6. Fatras, K., Séjourné, T., Flamary, R., Courty, N.: Unbalanced minibatch optimal transport; applications to domain adaptation. In: International Conference on Machine Learning, pp. 3186–3197 (2021)

    Google Scholar 

  7. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  8. Genevay, A., Peyré, G., Cuturi, M.: Learning generative models with Sinkhorn divergences. In: International Conference on Artificial Intelligence and Statistics, pp. 1608–1617 (2018)

    Google Scholar 

  9. Janati, H., Cuturi, M., Gramfort, A.: Spatio-temporal alignments: optimal transport through space and time. In: International Conference on Artificial Intelligence and Statistics, pp. 1695–1704 (2020)

    Google Scholar 

  10. Janati, H., Cuturi, M., Gramfort, A.: Averaging spatio-temporal signals using optimal transport and soft alignments. arXiv:2203.05813 (2022)

  11. Lonjou, V., et al.: MACCS-ATCOR joint algorithm (MAJA). In: Remote Sensing of Clouds and the Atmosphere XXI, vol. 10001, p. 1000107 (2016)

    Google Scholar 

  12. Muzellec, B., Josse, J., Boyer, C., Cuturi, M.: Missing data imputation using optimal transport. In: International Conference on Machine Learning, pp. 7130–7140. PMLR (2020)

    Google Scholar 

  13. Nyborg, J., Pelletier, C., Lefèvre, S., Assent, I.: TimeMatch: unsupervised cross-region adaptation by temporal shift estimation. ISPRS J. Photogramm. Remote. Sens. 188, 301–313 (2022)

    Article  Google Scholar 

  14. Peyré, G., Cuturi, M.: Computational optimal transport. Found. Trends® Mach. Learn. 11(5–6), 355–607 (2019)

    Google Scholar 

  15. Purushotham, S., Carvalho, W., Nilanon, T., Liu, Y.: Variational recurrent adversarial deep domain adaptation. In: International Conference on Learning Representations (2017)

    Google Scholar 

  16. Redko, I., Habrard, A., Morvant, E., Sebban, M., Bennani, Y.: Advances in Domain Adaptation Theory. ISTE Press, London (2019)

    Google Scholar 

  17. Redko, I., Vayer, T., Flamary, R., Courty, N.: Co-optimal transport. In: Advances in Neural Information Processing Systems, NeurIPS (2020)

    Google Scholar 

  18. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  19. Vincent-Cuaz, C., Flamary, R., Corneli, M., Vayer, T., Courty, N.: Semi-relaxed Gromov-Wasserstein divergence and applications on graphs. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=RShaMexjc-x

  20. Wilson, G., Cook, D.: A survey of unsupervised deep domain adaptation. ACM J. 11, 1–46 (2020)

    Google Scholar 

  21. Wilson, G., Doppa, J.R., Cook, D.J.: Multi-source deep domain adaptation with weak supervision for time-series sensor data. In: ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1768–1778 (2020)

    Google Scholar 

Download references

Acknowledgements

François Painblanc and Romain Tavenard are partially funded through project MATS ANR-18-CE23-0006. Nicolas Courty is partially funded through project OTTOPIA ANR-20-CHIA-0030. Laetitia Chapel is partially funded through project MULTISCALE ANR-18-CE23-0022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Tavenard .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 288 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Painblanc, F., Chapel, L., Courty, N., Friguet, C., Pelletier, C., Tavenard, R. (2023). Match-And-Deform: Time Series Domain Adaptation Through Optimal Transport and Temporal Alignment. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14173. Springer, Cham. https://doi.org/10.1007/978-3-031-43424-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43424-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43423-5

  • Online ISBN: 978-3-031-43424-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics