Abstract
We introduce a modal language for reasoning about data graphs with incomplete information. Such data graphs are formally represented as models in which data value functions are partial—to capture what is unknown. In this setting, we also allow for unknown data values to be learned. Our main result is a sound and strongly complete axiomatization for the logic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abriola, S., Barceló, P., Figueira, D., Figueira, S.: Bisimulations on data graphs. J. Artif. Intell. Res. 61, 171–213 (2018)
Abriola, S., Cifuentes, S., Martinez, M., Pardal, N., Pin, E.: An epistemic approach to model uncertainty in data-graphs. Int. J. Approximate Reason. 160, 108948 (2023)
Abriola, S., Descotte, M.E., Fervari, R., Figueira, S.: Axiomatizations for downward XPath on data trees. J. Comput. Syst. Sci. 89, 209–245 (2017)
Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1), 1:1-1:39 (2008)
Areces, C., ten Cate, B.: Hybrid logics. In: Handbook of Modal Logic, pp. 821–868. Elsevier (2006)
Areces, C., Fervari, R.: Axiomatizing hybrid XPath with data. Log. Methods Comput. Sci. 17(3) (2021)
Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Logic J. IGPL 23(4), 601–627 (2015)
Areces, C., Fervari, R., Seiler, N.: Tableaux for hybrid XPath with data. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds.) EPIA 2017. LNCS (LNAI), vol. 10423, pp. 611–623. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65340-2_50
Arenas, M., Fan, W., Libkin, L.: On verifying consistency of XML specifications. In: 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2002), pp. 259–270. ACM (2002)
Aucher, G., van Benthem, J., Grossi, D.: Modal logics of sabotage revisited. J. Logic Comput. 28(2), 269–303 (2018)
Baelde, D., Lunel, S., Schmitz, S.: A sequent calculus for a modal logic on finite data trees. In: 25th EACSL Annual Conference on Computer Science Logic (CSL 2016), LIPIcs, vol. 62, pp. 32:1–32:16. Schloss Dagstuhl (2016)
Barceló, P., Libkin, L., Reutter, J.L.: Querying regular graph patterns. J. ACM 61(1), 81–854 (2014)
Blackburn, P., van Benthem, J., Wolter, F.: Handbook of Modal Logic. Elsevier, Amsterdam (2006)
Blackburn, P., ten Cate, B.: Pure extensions, proof rules, and hybrid axiomatics. Stud. Logica. 84(2), 277–322 (2006)
Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press (2001)
Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data trees and XML reasoning. J. ACM 56(3) (2009)
Braüner, T.: Hybrid Logics and its Proof-Theory, Applied Logics Series, vol. 37. Springer, Cham (2011). https://doi.org/10.1007/978-94-007-0002-4
ten Cate, B., Fontaine, G., Litak, T.: Some modal aspects of XPath. J. Appl. Non-Class. Logics 20(3), 139–171 (2010)
ten Cate, B., Litak, T., Marx, M.: Complete axiomatizations for XPath fragments. J. Appl. Logic 8(2), 153–172 (2010)
Clark, J., DeRose, S.: XML path language (XPath). Website (1999). W3C Recommendation. http://www.w3.org/TR/xpath
van Dalen, D.: Logic and Structure, 5th edn. Springer, Berlin (2013). https://doi.org/10.1007/978-3-540-85108-0
Figueira, D.: Reasoning on Words and Trees with Data. PhD thesis, Laboratoire Spécification et Vérification, ENS Cachan, France (2010)
Figueira, D.: Decidability of downward XPath. ACM Trans. Comput. Logic 13(4), 34 (2012)
Goldblatt, R.: An abstract setting for Henkin proofs. Topoi 3(1), 37–41 (1984)
Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath queries. ACM Trans. Database Syst. 30(2), 444–491 (2005)
Grabon, M., Michaliszyn, J., Otop, J., Wieczorek, P.: Querying data graphs with arithmetical regular expressions. In: 25th International Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 1088–1094. IJCAI/AAAI Press (2016)
Libkin, L., Martens, W., Vrgoč, D.: Querying graphs with data. J. ACM 63(2), 14:1-14:53 (2016)
Libkin, L., Vrgoč, D.: Regular path queries on graphs with data. In: International Conference on Database Theory (ICDT 2012), pp. 74–85. ACM (2012)
Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)
Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media Inc., Newton (2013)
Schinner, A.: The Voynich manuscript: evidence of the hoax hypothesis. Cryptologia 31(2), 95–107 (2007)
Acknowledgments
We thank the reviewers for their valuable comments. Our work is supported by the Laboratoire International Associé SINFIN, the EU Grant Agreement 101008233 (MISSION), the ANPCyT projects PICT-2020-3780, PICT-2021-00400, PICT-2021-00675, and PICTO-2022-CBA-00088, and the CONICET projects PIBAA-28720210100428CO, PIBAA-28720210100165CO, and PIP-11220200100812CO.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Areces, C., Cassano, V., Dutto, D., Fervari, R. (2023). Data Graphs with Incomplete Information (and a Way to Complete Them). In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_49
Download citation
DOI: https://doi.org/10.1007/978-3-031-43619-2_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43618-5
Online ISBN: 978-3-031-43619-2
eBook Packages: Computer ScienceComputer Science (R0)