Abstract
Industries are going through transformations by taking into consideration environmental effects, global developments and impact of corona on their business strategy. In addition to pure technology developments, the development of fast and efficient processes for new and existing product systems and the end-to-end digital networking of all value creation steps are essential prerequisites to support such transformations. In this context, the concept of Digital Twins is taking center stage in many industries, however, there are a limited number of generic methods/frameworks to develop Digital Twins, especially those which consider business goals, business processes and technologies. This paper presents a framework based on capability building blocks to develop Digital Twins for industries in any sector or lifecycle phase. The framework is split into three parts including the consideration of Digital Twin business goals, processes it affects/uses and capabilities which need to be considered to develop them. In addition, the framework is applied to identify and develop a use case and its Digital Twin capability elements, in the aviation sector.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Marr, B.: The Top 5 Manufacturing Trends In 2023. Forbes (2023)
MyHub Intranet Solutions Limited: 145 Digital Transformation Statistics You Need To Know In 2023 [INFOGRAPHIC] (2023). https://www.myhubintranet.com/digital-transformation-statistics/. Accessed 31 Mar 2023
VanDerHorn, E., Mahadevan, S.: Digital Twin: generalization, characterization and implementation. Decis. Support Syst. 145, 113524 (2021). https://doi.org/10.1016/j.dss.2021.113524
Raghunathan, V.: Why digital twins are central to digital transformation? Entrepreneur Asia Pacific (2019)
Liu, M., Fang, S., Dong, H., et al.: Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 58, 346–361 (2021). https://doi.org/10.1016/j.jmsy.2020.06.017
Stark, R., Fresemann, C., Lindow, K.: Development and operation of Digital Twins for technical systems and services. CIRP Ann. 68, 129–132 (2019). https://doi.org/10.1016/j.cirp.2019.04.024
Ariansyaha, D., Del Fernàndez Amo, I., Erkoyuncu, J.A., et al.: Digital Twin Development: A Step by Step Guideline (2020)
Aheleroff, S., Xu, X., Zhong, R.Y., et al.: Digital Twin as a Service (DTaaS) in Industry 4.0: an architecture reference model. Adv. Eng. Inform. 47, 101225 (2021). https://doi.org/10.1016/j.aei.2020.101225
Friederich, J., Francis, D.P., Lazarova-Molnar, S., et al.: A framework for data-driven digital twins of smart manufacturing systems. Comput. Ind. 136, 103586 (2022). https://doi.org/10.1016/j.compind.2021.103586
Schroeder, G.N., Steinmetz, C., Rodrigues, R.N., et al.: A methodology for digital twin modeling and deployment for Industry 4.0. Proc. IEEE 109, 556–567 (2021). https://doi.org/10.1109/JPROC.2020.3032444
Grieves, M., Vickers, J.: Digital Twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Kahlen, F.-J., Flumerfelt, S., Alves, A. (eds.) Transdisciplinary Perspectives on Complex Systems, pp. 85–113. Springer, Cham (2017)
Stark, R., Damerau, T.: Digital Twin. In: Arriola, A. (Hg.) Modelling in Cutting, pp. 1–8 (2019)
Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access 7, 167653–167671 (2019). https://doi.org/10.1109/access.2019.2953499
Schweigert-Recksiek, S., Trauer, J., Engel, C., et al.: Conception of a digital twin in mechanical engineering – a case study in technical product development. Proc. Des. Soc. Des. Conf. 1, 383–392 (2020). https://doi.org/10.1017/dsd.2020.23
Lünnemann, P., Lindow, K., Goßlau, L.: Implementing digital twins in existing infrastructures. Forsch Ingenieurwes (2023). https://doi.org/10.1007/s10010-023-00639-w
Fang, X., Wang, H., Liu, G., et al.: Industry application of digital twin: from concept to implementation. Int. J. Adv. Manuf. Technol. 121, 4289–4312 (2022). https://doi.org/10.1007/s00170-022-09632-z
Lindow, K.: Horizontal value creation through IoT and digital twin data. In: The Proceedings of Mechanical Engineering Congress, Japan 2022:C121-01 (2022). https://doi.org/10.1299/jsmemecj.2022.C121-01
Qamsane, Y., Moyne, J., Toothman, M., et al.: A methodology to develop and implement digital twin solutions for manufacturing systems. IEEE Access 9, 44247–44265 (2021). https://doi.org/10.1109/ACCESS.2021.3065971
Aydemir, H., Zengin, U., Durak, U.: The digital twin paradigm for aircraft review and outlook. In: AIAA Scitech 2020 Forum. American Institute of Aeronautics and Astronautics, Reston, Virginia, 01 June 2020
Wirth, R., Hipp, J.: CRISP-DM: towards a standard process model for data mining (2000)
Riedelsheimer, T., Gogineni, S., Stark, R.: Methodology to develop Digital Twins for energy efficient customizable IoT-Products. Procedia CIRP 98, 258–263 (2021). https://doi.org/10.1016/j.procir.2021.01.040
Riedelsheimer, T., Lünnemann, P., Lindow, K., et al.: Betrachtung des Entwicklungsumfeldes durch die methodische Datenflussanalyse. ProduktDaten J. 52–56 (2017)
Wang, W.M., Lünnemann, P., Manteca, I.: Engineering activities – considering value creation from a holistic perspective. In: 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC 2017), pp. 315–323 (2017)
Ammermann, D.: Digital Twins and the Internet of Things (IoT) | SAP Blogs (2017). https://blogs.sap.com/2017/09/09/digital-twins-and-the-internet-of-things-iot/. Accessed 28 Feb 2023
Parrott, A., Warshaw, L.: Industry 4.0 and the digital twin: Manufacturing meets its match (2017). https://www2.deloitte.com/us/en/insights/focus/industry-4-0/digital-twin-technology-smart-factory.html. Accessed 28 Feb 2023
Gregorio, T., Oliveira, A., Melo, D., et al.: Comparing IoT Platforms under Middleware Requirements in an IoT Perspective (2016)
Baig, N.: Materials and the digital twin: how to integrate test and simulation data. Simulation & Digital Twins - Behind the Buzzwords (2018)
Schön, E.-M., Thomaschewski, J., Escalona, M.J.: Agile requirements engineering: a systematic literature review. Comput. Stand. Interfaces 49, 79–91 (2017). https://doi.org/10.1016/j.csi.2016.08.011
Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M., et al.: Improving agile requirements: the Quality User Story framework and tool. Requir. Eng. 21, 383–403 (2016). https://doi.org/10.1007/s00766-016-0250-x
Cohn, M.: User Stories Applied. User Stories Applied: For Agile Software Development. Addison-Wesley Signature Series. Addison-Wesley, Boston (2004)
Digital Twin Consortium: Capabilities Periodic Table - Digital Twin Consortium (2022). https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table/. Accessed 14 Apr 2023
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 IFIP International Federation for Information Processing
About this paper
Cite this paper
Gogineni, S., Tanrikulu, C., Brünnhäußer, J., Lindow, K., Witte, H. (2023). Capability Building Blocks for Digital Twin Development. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures. APMS 2023. IFIP Advances in Information and Communication Technology, vol 691. Springer, Cham. https://doi.org/10.1007/978-3-031-43670-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-43670-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43669-7
Online ISBN: 978-3-031-43670-3
eBook Packages: Computer ScienceComputer Science (R0)