Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

FedSoup: Improving Generalization and Personalization in Federated Learning via Selective Model Interpolation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14221))

Abstract

Cross-silo federated learning (FL) enables the development of machine learning models on datasets distributed across data centers such as hospitals and clinical research laboratories. However, recent research has found that current FL algorithms face a trade-off between local and global performance when confronted with distribution shifts. Specifically, personalized FL methods have a tendency to overfit to local data, leading to a sharp valley in the local model and inhibiting its ability to generalize to out-of-distribution data. In this paper, we propose a novel federated model soup method (i.e., selective interpolation of model parameters) to optimize the trade-off between local and global performance. Specifically, during the federated training phase, each client maintains its own global model pool by monitoring the performance of the interpolated model between the local and global models. This allows us to alleviate overfitting and seek flat minima, which can significantly improve the model’s generalization performance. We evaluate our method on retinal and pathological image classification tasks, and our proposed method achieves significant improvements for out-of-distribution generalization. Our code is available at https://github.com/ubc-tea/FedSoup.

This work is supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), Public Safety Canada, Compute Canada and National Natural Science Foundation of China (Project No. 62201485).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the heterogeneous setting (\(\mathcal {D}_i \ne \mathcal {D}_j\)), \(\mathcal {D}_j\) is viewed as the OOD data for client i.

  2. 2.

    We take a random subset from the original Camelyon17 dataset to match the small data settings in FL [18].

References

  1. Bándi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: the CAMELYON17 challenge. IEEE Trans. Med. Imaging 38(2), 550–560 (2019)

    Article  Google Scholar 

  2. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cha, J., et al.: SWAD: domain generalization by seeking flat minima. In: NeurIPS, pp. 22405–22418 (2021)

    Google Scholar 

  4. Chaudhari, P., et al.: Entropy-SGD: biasing gradient descent into wide valleys. In: ICLR (Poster). OpenReview.net (2017)

    Google Scholar 

  5. Collins, L., Hassani, H., Mokhtari, A., Shakkottai, S.: Exploiting shared representations for personalized federated learning. In: ICML. Proceedings of Machine Learning Research, vol. 139, pp. 2089–2099. PMLR (2021)

    Google Scholar 

  6. Dayan, I., et al.: Federated learning for predicting clinical outcomes in patients with covid-19. Nat. Med. 27(10), 1735–1743 (2021)

    Article  Google Scholar 

  7. Dou, Q., So, T.Y., Jiang, M., Liu, Q., Vardhanabhuti, V., Kaissis, G., et al.: Federated deep learning for detecting covid-19 lung abnormalities in CT: a privacy-preserving multinational validation study. NPJ Digit. Med. 4(1), 1–11 (2021)

    Article  Google Scholar 

  8. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization for efficiently improving generalization. In: ICLR. OpenReview.net (2021)

    Google Scholar 

  9. Fumero, F., Alayón, S., Sánchez, J.L., Sigut, J.F., González-Hernández, M.: RIM-ONE: an open retinal image database for optic nerve evaluation. In: CBMS, pp. 1–6. IEEE Computer Society (2011)

    Google Scholar 

  10. Ilharco, G., et al.: Patching open-vocabulary models by interpolating weights. CoRR abs/2208.05592 (2022)

    Google Scholar 

  11. Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D.P., Wilson, A.G.: Averaging weights leads to wider optima and better generalization. In: UAI, pp. 876–885. AUAI Press (2018)

    Google Scholar 

  12. Jiang, M., Yang, H., Li, X., Liu, Q., Heng, PA., Dou, Q.: Dynamic bank learning for semi-supervised federated image diagnosis with class imbalance. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. MICCAI 2022. LNCS, vol. 13433, pp. 196–206. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_19

  13. Kaddour, J., Liu, L., Silva, R., Kusner, M.J.: Questions for flat-minima optimization of modern neural networks. CoRR abs/2202.00661 (2022)

    Google Scholar 

  14. Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: CVPR, pp. 10713–10722. Computer Vision Foundation/IEEE (2021)

    Google Scholar 

  15. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: MLSys. mlsys.org (2020)

    Google Scholar 

  16. Li, X., Gu, Y., Dvornek, N., Staib, L.H., Ventola, P., Duncan, J.S.: Multi-site FMRI analysis using privacy-preserving federated learning and domain adaptation: abide results. Med. Image Anal. 65, 101765 (2020)

    Article  Google Scholar 

  17. Li, X., Jiang, M., Zhang, X., Kamp, M., Dou, Q.: FedBN: federated learning on non-IID features via local batch normalization. In: ICLR. OpenReview.net (2021)

    Google Scholar 

  18. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: AISTATS. Proceedings of Machine Learning Research, vol. 54, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  19. Mirzadeh, S., Farajtabar, M., Görür, D., Pascanu, R., Ghasemzadeh, H.: Linear mode connectivity in multitask and continual learning. In: ICLR. OpenReview.net (2021)

    Google Scholar 

  20. Oh, J., Kim, S., Yun, S.: Fedbabu: Towards enhanced representation for federated image classification. CoRR abs/2106.06042 (2021)

    Google Scholar 

  21. Orlando, J.I., et al.: REFUGE challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Medical Image Anal. 59, 101570 (2020)

    Article  Google Scholar 

  22. Pati, S., et al.: Federated learning enables big data for rare cancer boundary detection. Nat. Commun. 13(1), 7346 (2022)

    Article  Google Scholar 

  23. Qu, Z., Li, X., Duan, R., Liu, Y., Tang, B., Lu, Z.: Generalized federated learning via sharpness aware minimization. In: ICML. Proceedings of Machine Learning Research, vol. 162, pp. 18250–18280. PMLR (2022)

    Google Scholar 

  24. Ramé, A., Ahuja, K., Zhang, J., Cord, M., Bottou, L., Lopez-Paz, D.: Recycling diverse models for out-of-distribution generalization. CoRR abs/2212.10445 (2022)

    Google Scholar 

  25. Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 3(1), 1–7 (2020)

    Article  Google Scholar 

  26. Sivaswamy, J., Krishnadas, S., Chakravarty, A., Joshi, G., Tabish, A.S., et al.: A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomed. Imaging Data Papers 2(1), 1004 (2015)

    Google Scholar 

  27. Wortsman, M., et al.: Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. In: ICML. Proceedings of Machine Learning Research, vol. 162, pp. 23965–23998. PMLR (2022)

    Google Scholar 

  28. Wu, S., et al.: Motley: benchmarking heterogeneity and personalization in federated learning. CoRR abs/2206.09262 (2022)

    Google Scholar 

  29. Yao, Z., Gholami, A., Keutzer, K., Mahoney, M.W.: PyHessian: neural networks through the lens of the hessian. In: IEEE BigData, pp. 581–590. IEEE (2020)

    Google Scholar 

  30. Zhang, M., Sapra, K., Fidler, S., Yeung, S., Alvarez, J.M.: Personalized federated learning with first order model optimization. In: ICLR. OpenReview.net (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxiao Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1462 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, M., Jiang, M., Dou, Q., Wang, Z., Li, X. (2023). FedSoup: Improving Generalization and Personalization in Federated Learning via Selective Model Interpolation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics