Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Longitudinal Multimodal Transformer Integrating Imaging and Latent Clinical Signatures from Routine EHRs for Pulmonary Nodule Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

The accuracy of predictive models for solitary pulmonary nodule (SPN) diagnosis can be greatly increased by incorporating repeat imaging and medical context, such as electronic health records (EHRs). However, clinically routine modalities such as imaging and diagnostic codes can be asynchronous and irregularly sampled over different time scales which are obstacles to longitudinal multimodal learning. In this work, we propose a transformer-based multimodal strategy to integrate repeat imaging with longitudinal clinical signatures from routinely collected EHRs for SPN classification. We perform unsupervised disentanglement of latent clinical signatures and leverage time-distance scaled self-attention to jointly learn from clinical signatures expressions and chest computed tomography (CT) scans. Our classifier is pretrained on 2,668 scans from a public dataset and 1,149 subjects with longitudinal chest CTs, billing codes, medications, and laboratory tests from EHRs of our home institution. Evaluation on 227 subjects with challenging SPNs revealed a significant AUC improvement over a longitudinal multimodal baseline (0.824 vs 0.752 AUC), as well as improvements over a single cross-section multimodal scenario (0.809 AUC) and a longitudinal imaging-only scenario (0.741 AUC). This work demonstrates significant advantages with a novel approach for co-learning longitudinal imaging and non-imaging phenotypes with transformers. Code available at https://github.com/MASILab/lmsignatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ardila, D., et al.: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography (2019). https://www.nature.com/articles/s41591-019-0447-x

  2. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.: RETAIN: an interpretable predictive model for healthcare using reverse time attention mechanism. In: Advances in Neural Information Processing Systems. vol. 29 (2016)

    Google Scholar 

  3. Finch, A., et al.: Exploiting hierarchy in medical concept embedding. JAMIA Open 4(1), ooab022 (2021)

    Google Scholar 

  4. Fritsch, F.N., Butland, J.: A method for constructing local monotone piecewise cubic interpolants. SIAM J. Sci. Stat. Comput. 5(2), 300–304 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gao, R., et al.: Time-distanced gates in long short-term memory networks. Med. Image Anal. 65(101785), 101785 (2020)

    Article  Google Scholar 

  6. Gao, R., et al.: Deep multi-path network integrating incomplete biomarker and chest CT data for evaluating lung cancer risk. In: Medical Imaging 2021: Image Processing. vol. 11596, pp. 387–393. SPIE (2021)

    Google Scholar 

  7. Gaudet-Blavignac, C., Foufi, V., Bjelogrlic, M., Lovis, C.: Use of the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) for Processing Free Text in Health Care: Systematic Scoping Review. J. Med. Internet Res. 23(1), e24594 (2021)

    Article  Google Scholar 

  8. Gómez-Sáez, N., et al.: Prevalence and variables associated with solitary pulmonary nodules in a routine clinic-based population: a cross-sectional study. Eur. Radiol. 24(9), 2174–2182 (2014)

    Article  Google Scholar 

  9. Gould, M.K., et al.: Recent trends in the identification of incidental pulmonary nodules. Am. J. Respir. Crit. Care Med. 192(10), 1208–1214 (2015)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  11. Huang, K., Altosaar, J., Ranganath, R.: Clinicalbert: Modeling clinical notes and predicting hospital readmission. arXiv:1904.05342 (2019)

  12. Huang, P., et al.: Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method. Lancet Dig. Health 1(7), e353–e362 (2019)

    Article  Google Scholar 

  13. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  14. Labach, A., Pokhrel, A., Yi, S.E., Zuberi, S., Volkovs, M., Krishnan, R.G.: Effective self-supervised transformers for sparse time series data (2023). https://openreview.net/forum?id=HUCgU5EQluN

  15. Lasko, T., et al.: EHR-driven machine-learning model to distinguish benign from malignant pulmonary nodules (2023)

    Google Scholar 

  16. Lasko, T.: Nonstationary gaussian process regression for evaluating repeated clinical laboratory tests. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 29 (2015)

    Google Scholar 

  17. Lasko, T.A.: Efficient inference of gaussian-process-modulated renewal processes with application to medical event data. In: Uncertainty in Artificial Intelligence: Proceedings of the Conference. Conference on Uncertainty in Artificial Intelligence. vol. 2014, p. 469. NIH Public Access (2014)

    Google Scholar 

  18. Lasko, T.A., Mesa, D.A.: Computational phenotype discovery via probabilistic independence. arXiv preprint arXiv:1907.11051 (2019)

  19. Li, T.Z., et al.: Time-distance vision transformers in lung cancer diagnosis from longitudinal computed tomography. arXiv preprint arXiv:2209.01676 (2022)

  20. Li, Y., et al.: BEHRT: transformer for electronic health records. Sci. Rep. 10(1), 1–12 (2020)

    Google Scholar 

  21. Liao, F., Liang, M., Li, Z., Hu, X., Song, S.: Evaluate the malignancy of pulmonary nodules using the 3D deep leaky noisy-or network. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3484–3495 (2019)

    Article  Google Scholar 

  22. Massion, P.P., Walker, R.C.: Indeterminate pulmonary nodules: risk for having or for developing lung cancer? Cancer Prev. Res. (Phila) 7(12), 1173–1178 (2014)

    Article  Google Scholar 

  23. McWilliams, A., et al.: Probability of cancer in pulmonary nodules detected on first screening CT. N. Engl. J. Med. 369(10), 910–919 (2013)

    Article  Google Scholar 

  24. Mohsen, F., Ali, H., El Hajj, N., Shah, Z.: Artificial intelligence-based methods for fusion of electronic health records and imaging data. Sci. Rep. 12(1), 17981 (2022)

    Article  Google Scholar 

  25. Rasmy, L., Xiang, Y., Xie, Z., Tao, C., Zhi, D.: Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction. NPJ Dig. Med. 4(1), 86 (2021)

    Article  Google Scholar 

  26. Rivera, M.P., Mehta, A.C., Wahidi, M.M.: Establishing the diagnosis of lung cancer: diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest 143(5 Suppl), e142S-e165S (2013)

    Article  Google Scholar 

  27. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to information retrieval. vol. 39. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  28. Team, N.L.S.T.R.: Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365(5), 395–409 (2011)

    Google Scholar 

  29. Tipirneni, S., Reddy, C.K.: Self-supervised transformer for sparse and irregularly sampled multivariate clinical time-series. ACM Trans. Knowl. Discov. Data (TKDD) 16(6), 1–17 (2022)

    Article  Google Scholar 

  30. Vanguri, R.S., et al.: Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L) 1 blockade in patients with non-small cell lung cancer. Nat. Cancer 3(10), 1151–1164 (2022)

    Google Scholar 

  31. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems. vol. 30 (2017)

    Google Scholar 

  32. Wu, C., Wu, F., Huang, Y.: Da-transformer: Distance-aware transformer. arXiv preprint arXiv:2010.06925 (2020)

  33. Zhang, X., Zeman, M., Tsiligkaridis, T., Zitnik, M.: Graph-guided network for irregularly sampled multivariate time series. arXiv preprint arXiv:2110.05357 (2021)

Download references

Acknowledgements

This research was funded by the NIH through R01CA253923-02 and in part by NSF CAREER 1452485 and NSF 2040462. This research is also supported by ViSE through T32EB021937-07 and the Vanderbilt Institute for Clinical and Translational Research through UL1TR002243-06. We thank the National Cancer Institute for providing data collected through the NLST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Z. Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 40 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, T.Z. et al. (2023). Longitudinal Multimodal Transformer Integrating Imaging and Latent Clinical Signatures from Routine EHRs for Pulmonary Nodule Classification. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics