Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Role of Subgroup Separability in Group-Fair Medical Image Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14222))

Abstract

We investigate performance disparities in deep classifiers. We find that the ability of classifiers to separate individuals into subgroups varies substantially across medical imaging modalities and protected characteristics; crucially, we show that this property is predictive of algorithmic bias. Through theoretical analysis and extensive empirical evaluation (Code is available at https://github.com/biomedia-mira/subgroup-separability), we find a relationship between subgroup separability, subgroup disparities, and performance degradation when models are trained on data with systematic bias such as underdiagnosis. Our findings shed new light on the question of how models become biased, providing important insights for the development of fair medical imaging AI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvi, M., Zisserman, A., Nellåker, C.: Turning a blind eye: explicit removal of biases and variation from deep neural network embeddings. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 556–572. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_34

    Chapter  Google Scholar 

  2. Bernhardt, M., Jones, C., Glocker, B.: Potential sources of dataset bias complicate investigation of underdiagnosis by machine learning algorithms. Nat. Med. 28(6), 1157–1158 (2022). https://doi.org/10.1038/s41591-022-01846-8

    Article  Google Scholar 

  3. Brown, A., Tomasev, N., Freyberg, J., Liu, Y., Karthikesalingam, A.: Detecting and Preventing Shortcut Learning for Fair Medical AI using Shortcut Testing (ShorT)

    Google Scholar 

  4. Castro, D.C., Walker, I., Glocker, B.: Causality matters in medical imaging. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-17478-w

    Article  Google Scholar 

  5. DeGrave, A.J., Janizek, J.D., Lee, S.I.: AI for radiographic COVID-19 detection selects shortcuts over signal. Nat. Mach. Intell. 3(7), 610–619 (2021). https://doi.org/10.1038/s42256-021-00338-7

    Article  Google Scholar 

  6. Geirhos, R., et al.: Shortcut learning in deep neural networks. Nat. Mach. Intell. 2(11), 665–673 (2020). https://doi.org/10.1038/s42256-020-00257-z

    Article  Google Scholar 

  7. Gichoya, J.W., et al.: AI recognition of patient race in medical imaging: a modelling study. Lancet Digit. Health 4(6), e406–e414 (2022). https://doi.org/10.1016/S2589-7500(22)00063-2

    Article  Google Scholar 

  8. Glocker, B., Jones, C., Bernhardt, M., Winzeck, S.: Algorithmic encoding of protected characteristics in chest X-ray disease detection models. eBioMedicine 89 (2023). https://doi.org/10.1016/j.ebiom.2023.104467

  9. Groh, M., Harris, C., Daneshjou, R., Badri, O., Koochek, A.: Towards transparency in dermatology image datasets with skin tone annotations by experts, crowds, and an algorithm. Proc. ACM Hum.-Comput. Interact. 6(CSCW2), 521:1–521:26 (2022). https://doi.org/10.1145/3555634

  10. Groh, M., et al.: Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1820–1828 (2021)

    Google Scholar 

  11. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 590–597 (2019). https://doi.org/10.1609/aaai.v33i01.3301590

  12. Jabbour, S., Fouhey, D., Kazerooni, E., Sjoding, M.W., Wiens, J.: Deep learning applied to chest x-rays: exploiting and preventing shortcuts. In: Proceedings of the Machine Learning for Healthcare Conference, pp. 750–782. PMLR (Sep 2020)

    Google Scholar 

  13. Johnson, A.E.W., et al.: MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci. Data 6(1), 317 (2019). https://doi.org/10.1038/s41597-019-0322-0

  14. Kim, B., Kim, H., Kim, K., Kim, S., Kim, J.: Learning not to learn: training deep neural networks with biased data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9012–9020 (2019)

    Google Scholar 

  15. Kovalyk, O., Morales-Sánchez, J., Verdú-Monedero, R., Sellés-Navarro, I., Palazón-Cabanes, A., Sancho-Gómez, J.L.: PAPILA: dataset with fundus images and clinical data of both eyes of the same patient for glaucoma assessment. Sci. Data 9(1), 291 (2022). https://doi.org/10.1038/s41597-022-01388-1

    Article  Google Scholar 

  16. Mittelstadt, B., Wachter, S., Russell, C.: The unfairness of fair machine learning: levelling down and strict egalitarianism by default, January 2023

    Google Scholar 

  17. Nauta, M., Walsh, R., Dubowski, A., Seifert, C.: Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics 12(1), 40 (2021). https://doi.org/10.3390/diagnostics12010040

    Article  Google Scholar 

  18. Oakden-Rayner, L., Dunnmon, J., Carneiro, G., Ré, C.: Hidden stratification causes clinically meaningful failures in machine learning for medical imaging. In: Proceedings of the ACM Conference on Health, Inference, and Learning 2020, pp. 151–159 (2020). https://doi.org/10.1145/3368555.3384468

  19. Rajpurkar, P., et al.: CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning, November 2017

    Google Scholar 

  20. Seyyed-Kalantari, L., Zhang, H., McDermott, M.B., Chen, I.Y., Ghassemi, M.: Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 27(12), 2176–2182 (2021). https://doi.org/10.1038/s41591-021-01595-0

  21. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 180161 (2018). https://doi.org/10.1038/sdata.2018.161

    Article  Google Scholar 

  22. Vapnik, V.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999). https://doi.org/10.1109/72.788640

    Article  Google Scholar 

  23. Wachter, S., Mittelstadt, B., Russell, C.: Bias preservation in machine learning: the legality of fairness metrics under EU non-discrimination law. West Virginia Law Rev. (2021)

    Google Scholar 

  24. Wang, Z., et al.: Towards fairness in visual recognition: effective strategies for bias mitigation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  25. Wiles, O., et al.: A fine-grained analysis on distribution shift. In: International Conference on Learning Representations, January 2022

    Google Scholar 

  26. Zietlow, D., et al.: Leveling down in computer vision: pareto inefficiencies in fair deep classifiers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10410–10421 (2022)

    Google Scholar 

  27. Zong, Y., Yang, Y., Hospedales, T.: MEDFAIR: benchmarking fairness for medical imaging. In: International Conference on Learning Representations, February 2023

    Google Scholar 

Download references

Acknowledgements

C.J. is supported by Microsoft Research and EPSRC through the Microsoft PhD Scholarship Programme. M.R. is funded through an Imperial College London President’s PhD Scholarship. B.G. received support from the Royal Academy of Engineering as part of his Kheiron/RAEng Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Jones .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 191 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jones, C., Roschewitz, M., Glocker, B. (2023). The Role of Subgroup Separability in Group-Fair Medical Image Classification. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics