Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

PROnet: Point Refinement Using Shape-Guided Offset Map for Nuclei Instance Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14220))

Abstract

Recently, weakly supervised nuclei segmentation methods using only points are gaining attention, as they can ease the tedious labeling process. However, most methods often fail to separate adjacent nuclei and are particularly sensitive to point annotations that deviate from the center of nuclei, resulting in lower accuracy. In this study, we propose a novel weakly supervised method to effectively distinguish adjacent nuclei and maintain robustness regardless of point label deviation. We detect and segment nuclei by combining a binary segmentation module, an offset regression module, and a center detection module to determine foreground pixels, delineate boundaries and identify instances. In training, we first generate pseudo binary masks using geodesic distance-based Voronoi diagrams and k-means clustering. Next, segmentation predictions are used to repeatedly generate pseudo offset maps that indicate the most likely nuclei center. Finally, an Expectation Maximization (EM) based process iteratively refines initial point labels based on the offset map predictions to fine-tune our framework. Experimental results show that our model consistently outperforms state-of-the-art methods on public datasets regardless of the point annotation accuracy.

S. Nam and J. Jeong—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alsubaie, N., Sirinukunwattana, K., Raza, S.E.A., Snead, D., Rajpoot, N.: A bottom-up approach for tumour differentiation in whole slide images of lung adenocarcinoma. In: Medical Imaging 2018: Digital Pathology, vol. 10581, pp. 104–113. SPIE (2018)

    Google Scholar 

  2. Cheng, B., et al.: Panoptic-DeepLab: a simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12475–12485 (2020)

    Google Scholar 

  3. Criminisi, A., Sharp, T., Blake, A.: GeoS: geodesic image segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 99–112. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_9

    Chapter  Google Scholar 

  4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc.: Series B (Methodological) 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Dong, M., et al.: Towards neuron segmentation from macaque brain images: a weakly supervised approach. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 194–203. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_19

    Chapter  Google Scholar 

  6. Graham, S., et al.: Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019)

    Article  Google Scholar 

  7. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. Royal Stat. Soc. Ser. c (Applied Statistics) 28(1), 100–108 (1979)

    Google Scholar 

  8. He, H., et al.: CDNet: centripetal direction network for nuclear instance segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4026–4035 (2021)

    Google Scholar 

  9. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  10. Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: weakly supervised instance and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 876–885 (2017)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Kumar, N., et al.: A multi-organ nucleus segmentation challenge. IEEE Trans. Med. Imaging 39(5), 1380–1391 (2019)

    Article  Google Scholar 

  13. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)

    Article  Google Scholar 

  14. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 734–750 (2018)

    Google Scholar 

  15. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: ScribbleSup: scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3159–3167 (2016)

    Google Scholar 

  16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  17. Liu, W., He, Q., He, X.: Weakly supervised nuclei segmentation via instance learning. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022)

    Google Scholar 

  18. Lu, C., et al.: Nuclear shape and orientation features from h &e images predict survival in early-stage estrogen receptor-positive breast cancers. Lab. Investig. 98(11), 1438–1448 (2018)

    Article  Google Scholar 

  19. Neven, D., Brabandere, B.D., Proesmans, M., Gool, L.V.: Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8837–8845 (2019)

    Google Scholar 

  20. Nishimura, K., Ker, D.F.E., Bise, R.: Weakly supervised cell instance segmentation by propagating from detection response. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 649–657. Springer (2019)

    Google Scholar 

  21. Qu, H., et al.: Weakly supervised deep nuclei segmentation using points annotation in histopathology images. In: International Conference on Medical Imaging with Deep Learning, pp. 390–400. PMLR (2019)

    Google Scholar 

  22. Qu, H., Yi, J., Huang, Q., Wu, P., Metaxas, D.: Nuclei segmentation using mixed points and masks selected from uncertainty. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 973–976. IEEE (2020)

    Google Scholar 

  23. Tian, K., et al.: Weakly-supervised nucleus segmentation based on point annotations: a coarse-to-fine self-stimulated learning strategy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 299–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_29

    Chapter  Google Scholar 

  24. Toivanen, P.J.: New geodosic distance transforms for gray-scale images. Pattern Recogn. Lett. 17(5), 437–450 (1996)

    Article  Google Scholar 

  25. Uhrig, J., Rehder, E., Fröhlich, B., Franke, U., Brox, T.: Box2Pix: single-shot instance segmentation by assigning pixels to object boxes. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 292–299. IEEE (2018)

    Google Scholar 

  26. Vu, Q.D., Graham, S., et al.: Methods for segmentation and classification of digital microscopy tissue images. Front. Bioeng. Biotech., p. 53 (2019)

    Google Scholar 

  27. Wang, G., et al.: DeepiGeoS: a deep interactive geodesic framework for medical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1559–1572 (2019). https://doi.org/10.1109/TPAMI.2018.2840695

    Article  Google Scholar 

  28. Yoo, I., Yoo, D., Paeng, K.: PseudoEdgeNet: nuclei segmentation only with point annotations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 731–739. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_81

    Chapter  Google Scholar 

  29. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

Download references

Acknowledgment

This work was supported by IITP grant funded by the Korean government (MSIT) (No.2021-0-02068, Artificial Intelligence Innovation Hub), the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No. 2019R1C1C1008727), Smart Health Care Program funded by the Korean National Police Agency (220222M01), DGIST R &D program of the Ministry of Science and ICT of KOREA (21-DPIC-08)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hyun Park .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8173 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nam, S., Jeong, J., Luna, M., Chikontwe, P., Park, S.H. (2023). PROnet: Point Refinement Using Shape-Guided Offset Map for Nuclei Instance Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics