Abstract
Acquiring and annotating sufficient labeled data is crucial in developing accurate and robust learning-based models, but obtaining such data can be challenging in many medical image segmentation tasks. One promising solution is to synthesize realistic data with ground-truth mask annotations. However, no prior studies have explored generating complete 3D volumetric images with masks. In this paper, we present MedGen3D, a deep generative framework that can generate paired 3D medical images and masks. First, we represent the 3D medical data as 2D sequences and propose the Multi-Condition Diffusion Probabilistic Model (MC-DPM) to generate multi-label mask sequences adhering to anatomical geometry. Then, we use an image sequence generator and semantic diffusion refiner conditioned on the generated mask sequences to produce realistic 3D medical images that align with the generated masks. Our proposed framework guarantees accurate alignment between synthetic images and segmentation maps. Experiments on 3D thoracic CT and brain MRI datasets show that our synthetic data is both diverse and faithful to the original data, and demonstrate the benefits for downstream segmentation tasks. We anticipate that MedGen3D’s ability to synthesize paired 3D medical images and masks will prove valuable in training deep learning models for medical imaging tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint arXiv: Arxiv-1701.07875 (2017)
Baur, C., Albarqouni, S., Navab, N.: Melanogans: high resolution skin lesion synthesis with gans. arXiv preprint arXiv:1804.04338 (2018)
Bermudez, C., Plassard, A.J., Davis, L.T., Newton, A.T., Resnick, S.M., Landman, B.A.: Learning implicit brain mri manifolds with deep learning. In: Medical Imaging: Image Processing. SPIE (2018)
Cardoso, M.J., et al.: Monai: an open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)
Chen, X., et al.: A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy. Radiother. Oncol. 160, 175–184 (2021)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. In: NeurIPS (2021)
Fernandez, V., et al.: Can segmentation models be trained with fully synthetically generated data? In: Zhao, C., Svoboda, D., Wolterink, J.M., Escobar, M. (eds.) MICCAI Workshop. SASHIMI 2022, vol. 13570, pp. 79–90. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16980-9_8
Fischl, B.: Freesurfer. In: Neuroimage (2012)
Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63, 139–144 (2020)
Guibas, J.T., Virdi, T.S., Li, P.S.: Synthetic medical images from dual generative adversarial networks. arXiv preprint arXiv:1709.01872 (2017)
Han, C., et al.: Gan-based synthetic brain MR image generation. In: ISBI. IEEE (2018)
Hatamizadeh, A., et al.: Unetr: transformers for 3d medical image segmentation. In: WACV (2022)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS (2020)
Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint arXiv: Arxiv-2207.12598 (2022)
Kwon, G., Han, C., Kim, D.: Generation of 3D brain MRI using auto-encoding generative adversarial networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 118–126. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_14
Lambert, Z., Petitjean, C., Dubray, B., Kuan, S.: Segthor: segmentation of thoracic organs at risk in ct images. In: IPTA. IEEE (2020)
Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19, 1498–1507 (2007)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Subramaniam, P., Kossen, T., et al.: Generating 3d tof-mra volumes and segmentation labels using generative adversarial networks. Med. Image Anal. 78, 102396 (2022)
Sun, L., Chen, J., Xu, Y., Gong, M., Yu, K., Batmanghelich, K.: Hierarchical amortized gan for 3d high resolution medical image synthesis. IEEE J. Biomed. Health Inf. 28, 3966–3975 (2022)
Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3d medical image analysis. In: CVPR (2022)
Wang, T.C., et al.: Video-to-video synthesis. arXiv preprint arXiv:1808.06601 (2018)
Yan, X., Tang, H., Sun, S., Ma, H., Kong, D., Xie, X.: After-unet: axial fusion transformer unet for medical image segmentation. In: WACV (2022)
You, C., et al.: Mine your own anatomy: revisiting medical image segmentation with extremely limited labels. arXiv preprint arXiv:2209.13476 (2022)
You, C., et al.: Rethinking semi-supervised medical image segmentation: a variance-reduction perspective. arXiv preprint arXiv:2302.01735 (2023)
You, C., Dai, W., Min, Y., Staib, L., Duncan, J.S.: Implicit anatomical rendering for medical image segmentation with stochastic experts. arXiv preprint arXiv:2304.03209 (2023)
You, C., Dai, W., Min, Y., Staib, L., Sekhon, J., Duncan, J.S.: Action++: improving semi-supervised medical image segmentation with adaptive anatomical contrast. arXiv preprint arXiv:2304.02689 (2023)
You, C., Dai, W., Staib, L., Duncan, J.S.: Bootstrapping semi-supervised medical image segmentation with anatomical-aware contrastive distillation. arXiv preprint arXiv:2206.02307 (2022)
You, C., et al.: Class-aware adversarial transformers for medical image segmentation. In: NeurIPS (2022)
You, C., Zhao, R., Staib, L.H., Duncan, J.S.: Momentum contrastive voxel-wise representation learning for semi-supervised volumetric medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI, vol. 13434, pp. 639–652. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16440-8_61
You, C., Zhou, Y., Zhao, R., Staib, L., Duncan, J.S.: Simcvd: simple contrastive voxel-wise representation distillation for semi-supervised medical image segmentation. IEEE Trans. Med.Imaging 41, 2228–2237 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Han, K. et al. (2023). MedGen3D: A Deep Generative Framework for Paired 3D Image and Mask Generation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_72
Download citation
DOI: https://doi.org/10.1007/978-3-031-43907-0_72
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43906-3
Online ISBN: 978-3-031-43907-0
eBook Packages: Computer ScienceComputer Science (R0)