Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DiffDP: Radiotherapy Dose Prediction via a Diffusion Model

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14225))

Abstract

Currently, deep learning (DL) has achieved the automatic prediction of dose distribution in radiotherapy planning, enhancing its efficiency and quality. However, existing methods suffer from the over-smoothing problem for their commonly used \(L_{1}\) or \(L_{2}\) loss with posterior average calculations. To alleviate this limitation, we innovatively introduce a diffusion-based dose prediction (DiffDP) model for predicting the radiotherapy dose distribution of cancer patients. Specifically, the DiffDP model contains a forward process and a reverse process. In the forward process, DiffDP gradually transforms dose distribution maps into Gaussian noise by adding small noise and trains a noise predictor to predict the noise added in each timestep. In the reverse process, it removes the noise from the original Gaussian noise in multiple steps with the well-trained noise predictor and finally outputs the predicted dose distribution map. To ensure the accuracy of the prediction, we further design a structure encoder to extract anatomical information from patient anatomy images and enable the noise predictor to be aware of the dose constraints within several essential organs, i.e., the planning target volume and organs at risk. Extensive experiments on an in-house dataset with 130 rectum cancer patients demonstrate the superiority of our method.

Z. Feng and L. Wen—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murakami, Y., et al.: Possibility of chest wall dose reduction using volumetric-modulated arc therapy (VMAT) in radiation-induced rib fracture cases: comparison with stereotactic body radiation therapy (SBRT). J. Radiat. Res. 59(3), 327–332 (2018)

    Google Scholar 

  2. Wang, K., et al.: Semi-supervised medical image segmentation via a tripled-uncertainty guided mean teacher model with contrastive learning. Med. Image Anal. 79, 102447 (2022)

    Article  Google Scholar 

  3. Nelms, B.E., et al.: Variation in external beam treatment plan quality: an inter-institutional study of planners and planning systems. Pract. Radiat. Oncol. 2(4), 296–305 (2012)

    Google Scholar 

  4. Shi, Y., et al.: ASMFS: adaptive-similarity-based multi-modality feature selection for classification of Alzheimer's disease. Pattern Recogn. 126, 108566 (2022)

    Google Scholar 

  5. Wang, Y., et al.: 3D auto-context-based locality adaptive multi-modality GANs for PET synthesis. IEEE Trans. Med. Imaging 38(6), 1328–1339 (2018)

    Google Scholar 

  6. Zhang, J., Wang, L., Zhou, L., Li, W.: Beyond covariance: SICE and kernel based visual feature representation. Int. J. Comput. Vision 129, 300–320 (2021)

    Article  MATH  Google Scholar 

  7. Nguyen, D., et al.: Dose prediction with U-Net: a feasibility study for predicting dose distributions from contours using deep learning on prostate IMRT patients. arXiv preprint arXiv:1709.09233, 17 (2017)

  8. Tan, S., et al.: Incorporating isodose lines and gradient information via multi-task learning for dose prediction in radiotherapy. In: de Bruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Proceedings, Part VII, vol. 24, pp. 753–763. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_71

  9. Liu, S., Zhang, J., Li, T., Yan, H., Liu, J.: A cascade 3D U-Net for dose prediction in radiotherapy. Med. Phys. 48(9), 5574–5582 (2021)

    Article  Google Scholar 

  10. Wang, J., et al.: VMAT dose prediction in radiotherapy by using progressive refinement UNet. Neurocomputing 488, 528–539 (2022)

    Article  Google Scholar 

  11. Song, Y., et al.: Dose prediction using a deep neural network for accelerated planning of rectal cancer radiotherapy. Radiother. Oncol. 149, 111–116 (2020)

    Article  Google Scholar 

  12. Mahmood, R., Babier, A., McNiven, A., Diamant, A., Chan, T.C.: Automated treatment planning in radiation therapy using generative adversarial networks. In: Machine Learning for Healthcare Conference, pp. 484–499 (2018)

    Google Scholar 

  13. Zhan, B., et al.: Multi-constraint generative adversarial network for dose prediction in radiotherapy. Med. Image Anal. 77, 102339 (2022)

    Article  Google Scholar 

  14. Wen, L., et al.: A transformer-embedded multi-task model for dose distribution prediction. Int. J. Neural Syst., 2350043 (2023)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III, vol. 18, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  16. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

  17. Li, H., et al.: Explainable attention guided adversarial deep network for 3D radiotherapy dose distribution prediction. Knowl.-Based Syst. 241, 108324 (2022)

    Google Scholar 

  18. Wen, L., et al.: Multi-level progressive transfer learning for cervical cancer dose prediction. Pattern Recogn. 141, 109606 (2023)

    Article  Google Scholar 

  19. Xie, Y., Yuan, M., Dong, B., Li, Q.: Diffusion model for generative image denoising. arXiv preprint arXiv:2302.02398 (2023)

  20. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256–2265 (2015)

    Google Scholar 

  21. Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P.C.: Diffusion models for medical anomaly detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Proceedings, Part VIII, pp. 35–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_4

  22. Kim, B., Ye, J.C.: Diffusion deformable model for 4D temporal medical image generation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Proceedings, Part I, pp. 539–548. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_51

  23. Zhang, J., Zhou, L., Wang, L., Liu, M., Shen, D.: Diffusion kernel attention network for brain disorder classification. IEEE Trans. Med. Imaging 41(10), 2814–2827 (2022)

    Article  Google Scholar 

  24. Li, H., et al.: SRDiff: single image super-resolution with diffusion probabilistic models. Neurocomputing 479, 47–59 (2022)

    Google Scholar 

  25. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  26. Helal, A., Omar, A.: Homogeneity index: effective tool. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020). Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models

    Google Scholar 

  27. Graham, M.V., et al.: Clinical dose–volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int. J. Radiat. Oncol. Biol. Phys. 45(2), 323–329 (1999)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (NSFC 62371325, 62071314), Sichuan Science and Technology Program 2023YFG0263, 2023YFG0025, 2023NSFSC0497.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, Z. et al. (2023). DiffDP: Radiotherapy Dose Prediction via a Diffusion Model. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14225. Springer, Cham. https://doi.org/10.1007/978-3-031-43987-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43987-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43986-5

  • Online ISBN: 978-3-031-43987-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics