Abstract
Currently, deep learning (DL) has achieved the automatic prediction of dose distribution in radiotherapy planning, enhancing its efficiency and quality. However, existing methods suffer from the over-smoothing problem for their commonly used \(L_{1}\) or \(L_{2}\) loss with posterior average calculations. To alleviate this limitation, we innovatively introduce a diffusion-based dose prediction (DiffDP) model for predicting the radiotherapy dose distribution of cancer patients. Specifically, the DiffDP model contains a forward process and a reverse process. In the forward process, DiffDP gradually transforms dose distribution maps into Gaussian noise by adding small noise and trains a noise predictor to predict the noise added in each timestep. In the reverse process, it removes the noise from the original Gaussian noise in multiple steps with the well-trained noise predictor and finally outputs the predicted dose distribution map. To ensure the accuracy of the prediction, we further design a structure encoder to extract anatomical information from patient anatomy images and enable the noise predictor to be aware of the dose constraints within several essential organs, i.e., the planning target volume and organs at risk. Extensive experiments on an in-house dataset with 130 rectum cancer patients demonstrate the superiority of our method.
Z. Feng and L. Wen—Contribute equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Murakami, Y., et al.: Possibility of chest wall dose reduction using volumetric-modulated arc therapy (VMAT) in radiation-induced rib fracture cases: comparison with stereotactic body radiation therapy (SBRT). J. Radiat. Res. 59(3), 327–332 (2018)
Wang, K., et al.: Semi-supervised medical image segmentation via a tripled-uncertainty guided mean teacher model with contrastive learning. Med. Image Anal. 79, 102447 (2022)
Nelms, B.E., et al.: Variation in external beam treatment plan quality: an inter-institutional study of planners and planning systems. Pract. Radiat. Oncol. 2(4), 296–305 (2012)
Shi, Y., et al.: ASMFS: adaptive-similarity-based multi-modality feature selection for classification of Alzheimer's disease. Pattern Recogn. 126, 108566 (2022)
Wang, Y., et al.: 3D auto-context-based locality adaptive multi-modality GANs for PET synthesis. IEEE Trans. Med. Imaging 38(6), 1328–1339 (2018)
Zhang, J., Wang, L., Zhou, L., Li, W.: Beyond covariance: SICE and kernel based visual feature representation. Int. J. Comput. Vision 129, 300–320 (2021)
Nguyen, D., et al.: Dose prediction with U-Net: a feasibility study for predicting dose distributions from contours using deep learning on prostate IMRT patients. arXiv preprint arXiv:1709.09233, 17 (2017)
Tan, S., et al.: Incorporating isodose lines and gradient information via multi-task learning for dose prediction in radiotherapy. In: de Bruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Proceedings, Part VII, vol. 24, pp. 753–763. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_71
Liu, S., Zhang, J., Li, T., Yan, H., Liu, J.: A cascade 3D U-Net for dose prediction in radiotherapy. Med. Phys. 48(9), 5574–5582 (2021)
Wang, J., et al.: VMAT dose prediction in radiotherapy by using progressive refinement UNet. Neurocomputing 488, 528–539 (2022)
Song, Y., et al.: Dose prediction using a deep neural network for accelerated planning of rectal cancer radiotherapy. Radiother. Oncol. 149, 111–116 (2020)
Mahmood, R., Babier, A., McNiven, A., Diamant, A., Chan, T.C.: Automated treatment planning in radiation therapy using generative adversarial networks. In: Machine Learning for Healthcare Conference, pp. 484–499 (2018)
Zhan, B., et al.: Multi-constraint generative adversarial network for dose prediction in radiotherapy. Med. Image Anal. 77, 102339 (2022)
Wen, L., et al.: A transformer-embedded multi-task model for dose distribution prediction. Int. J. Neural Syst., 2350043 (2023)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III, vol. 18, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Li, H., et al.: Explainable attention guided adversarial deep network for 3D radiotherapy dose distribution prediction. Knowl.-Based Syst. 241, 108324 (2022)
Wen, L., et al.: Multi-level progressive transfer learning for cervical cancer dose prediction. Pattern Recogn. 141, 109606 (2023)
Xie, Y., Yuan, M., Dong, B., Li, Q.: Diffusion model for generative image denoising. arXiv preprint arXiv:2302.02398 (2023)
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256–2265 (2015)
Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P.C.: Diffusion models for medical anomaly detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Proceedings, Part VIII, pp. 35–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_4
Kim, B., Ye, J.C.: Diffusion deformable model for 4D temporal medical image generation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Proceedings, Part I, pp. 539–548. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_51
Zhang, J., Zhou, L., Wang, L., Liu, M., Shen, D.: Diffusion kernel attention network for brain disorder classification. IEEE Trans. Med. Imaging 41(10), 2814–2827 (2022)
Li, H., et al.: SRDiff: single image super-resolution with diffusion probabilistic models. Neurocomputing 479, 47–59 (2022)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)
Helal, A., Omar, A.: Homogeneity index: effective tool. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020). Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models
Graham, M.V., et al.: Clinical dose–volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int. J. Radiat. Oncol. Biol. Phys. 45(2), 323–329 (1999)
Acknowledgement
This work is supported by the National Natural Science Foundation of China (NSFC 62371325, 62071314), Sichuan Science and Technology Program 2023YFG0263, 2023YFG0025, 2023NSFSC0497.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Feng, Z. et al. (2023). DiffDP: Radiotherapy Dose Prediction via a Diffusion Model. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14225. Springer, Cham. https://doi.org/10.1007/978-3-031-43987-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-43987-2_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43986-5
Online ISBN: 978-3-031-43987-2
eBook Packages: Computer ScienceComputer Science (R0)