Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

TriDo-Former: A Triple-Domain Transformer for Direct PET Reconstruction from Low-Dose Sinograms

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

To obtain high-quality positron emission tomography (PET) images while minimizing radiation exposure, various methods have been proposed for reconstructing standard-dose PET (SPET) images from low-dose PET (LPET) sinograms directly. However, current methods often neglect boundaries during sinogram-to-image reconstruction, resulting in high-frequency distortion in the frequency domain and diminished or fuzzy edges in the reconstructed images. Furthermore, the convolutional architectures, which are commonly used, lack the ability to model long-range non-local interactions, potentially leading to inaccurate representations of global structures. To alleviate these problems, in this paper, we propose a transformer-based model that unites triple domains of sinogram, image, and frequency for direct PET reconstruction, namely TriDo-Former. Specifically, the TriDo-Former consists of two cascaded networks, i.e., a sinogram enhancement transformer (SE-Former) for denoising the input LPET sinograms and a spatial-spectral reconstruction transformer (SSR-Former) for reconstructing SPET images from the denoised sinograms. Different from the vanilla transformer that splits an image into 2D patches, based specifically on the PET imaging mechanism, our SE-Former divides the sinogram into 1D projection view angles to maintain its inner-structure while denoising, preventing the noise in the sinogram from prorogating into the image domain. Moreover, to mitigate high-frequency distortion and improve reconstruction details, we integrate global frequency parsers (GFPs) into SSR-Former. The GFP serves as a learnable frequency filter that globally adjusts the frequency components in the frequency domain, enforcing the network to restore high-frequency details resembling real SPET images. Validations on a clinical dataset demonstrate that our TriDo-Former outperforms the state-of-the-art methods qualitatively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, W.: Clinical applications of PET in brain tumors. J. Nucl. Med. 48(9), 1468–1481 (2007)

    Article  Google Scholar 

  2. Wang, Y., Ma, G., An, L., et al.: Semi-supervised tripled dictionary learning for standard-dose PET image prediction using low-dose PET and multimodal MRI. IEEE Trans. Biomed. Eng. 64(3), 569–579 (2016)

    Article  Google Scholar 

  3. Zhou, T., Fu, H., Chen, G., et al.: Hi-net: hybrid-fusion network for multi-modal MR image synthesis. IEEE Trans. Med. Imaging 39(9), 2772–2781 (2020)

    Article  Google Scholar 

  4. Li, Y., Zhou, T., He, K., et al.: Multi-scale transformer network with edge-aware pre-training for cross-modality MR image synthesis. IEEE Trans. Med. Imaging (2023)

    Google Scholar 

  5. Wang, K., et al.: Tripled-uncertainty guided mean teacher model for semi-supervised medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 450–460. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_42

    Chapter  Google Scholar 

  6. Zhan, B., Xiao, J., Cao, C., et al.: Multi-constraint generative adversarial network for dose prediction in radiotherapy. Med. Image Anal. 77, 102339 (2022)

    Article  Google Scholar 

  7. Wang, Y., Zhang, P., Ma, g., et al: Predicting standard-dose PET image from low- dose PET and multimodal MR images using mapping-based sparse representation. Phys. Med. Biol. 61(2), 791–812 (2016)

    Google Scholar 

  8. Spuhler, K., Serrano-Sosa, M., Cattell, R., et al.: Full-count PET recovery from low-count image using a dilated convolutional neural network. Med. Phys. 47(10), 4928–4938 (2020)

    Article  Google Scholar 

  9. Wang, Y., Yu, B., Wang, L., et al.: 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage 174, 550–562 (2018)

    Article  Google Scholar 

  10. Wang, Y., Zhou, L., Yu, B., et al.: 3D auto-context-based locality adaptive multi-modality GANs for PET synthesis. IEEE Trans. Med. Imaging 38(6), 1328–1339 (2018)

    Article  Google Scholar 

  11. Wang, Y., Zhou, L., Wang, L., et al.: Locality adaptive multi-modality GANs for high-quality PET image synthesis. In: Frangi, A., et al. (eds.) MICCAI 2018, vol. 11070, pp. 329–337. Springer, Cham (2018)

    Google Scholar 

  12. Luo, Y., Wang, Y., Zu, C., et al.: 3D Transformer-GAN for high-quality PET reconstruction. In: de Bruijne, M., et al. (eds.) MICCAI 2021, vol. 12906, pp. 276–285. Springer, Cham (2021)

    Google Scholar 

  13. Luo, Y., Zhou, L., Zhan, B., et al.: Adaptive rectification based adversarial network with spectrum constraint for high-quality PET image synthesis. Med. Image Anal. 77, 102335 (2022)

    Article  Google Scholar 

  14. Fei, Y., Zu, C., Jiao, Z., et al.: Classification-aided high-quality PET image synthesis via bidirectional contrastive GAN with shared information maximization. In: Wang, L., et al. (eds.) MICCAI 2022, vol. 13436, pp. 527–537. Springer, Cham (2022)

    Google Scholar 

  15. Zeng, P., Zhou, L., Zu, C., et al.: 3D CVT-GAN: a 3D convolutional vision transformer-GAN for PET reconstruction. In: Wang, L., et al. (eds.) MICCAI 2022, vol. 13436, pp. 516–526. Springer, Cham (2022)

    Google Scholar 

  16. Jiang, C., Pan, Y., Cui, Z., et al: Reconstruction of standard-dose PET from low-dose PET via dual-frequency supervision and global aggregation module. In: Proceedings of the19th International Symposium on Biomedical Imaging Conference, pp. 1–5 (2022)

    Google Scholar 

  17. Cui, J., Jiao, Z., Wei, Z., et al.: CT-only radiotherapy: an exploratory study for automatic dose prediction on rectal cancer patients via deep adversarial network. Front. Oncol. 12, 875661 (2022)

    Article  Google Scholar 

  18. Li, H., Peng, X., Zeng, J., et al.: Explainable attention guided adversarial deep network for 3D radiotherapy dose distribution prediction. Knowl. Based Syst. 241, 108324 (2022)

    Article  Google Scholar 

  19. Häggström, I., Schmidtlein, C.R., et al.: DeepPET: A deep encoder-decoder network for directly solving the PET image reconstruction inverse problem. Med. Image Anal. 54, 253–262 (2019)

    Article  Google Scholar 

  20. Wang, B., Liu, H.: FBP-Net for direct reconstruction of dynamic PET images. Phys. Med. Biol. 65(23), 235008 (2020)

    Article  Google Scholar 

  21. Ma, R., Hu, J., Sari, H., et al.: An encoder-decoder network for direct image reconstruction on sinograms of a long axial field of view PET. Eur. J. Nucl. Med. Mol. Imaging 49(13), 4464–4477 (2022)

    Article  Google Scholar 

  22. Whiteley, W., Luk, W.K., et al.: DirectPET: full-size neural network PET reconstruction from sinogram data. J. Med. Imaging 7(3), 32503 (2020)

    Article  Google Scholar 

  23. Liu, Z., Ye, H., and Liu, H: Deep-learning-based framework for PET image reconstruction from sinogram domain. Appl. Sci. 12(16), 8118 (2022)

    Google Scholar 

  24. Xue, H., Zhang, Q., Zou, S., et al.: LCPR-Net: low-count PET image reconstruction using the domain transform and cycle-consistent generative adversarial networks. Quant. Imaging Med. Surg. 11(2), 749 (2021)

    Article  Google Scholar 

  25. Feng, Q., Liu, H.: Rethinking PET image reconstruction: ultra-low-dose, sinogram and deep learning. In: Martel, A.L., et al. (eds.) MICCAI 2020, vol. 12267, pp. 783–792. Springer, Cham (2020)

    Google Scholar 

  26. Liu, Z., Chen, H., Liu, H.: Deep learning based framework for direct reconstruction of PET images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 48–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_6

  27. Hu, R., Liu, H: TransEM: Residual swin-transformer based regularized PET image reconstruction. In: Wang, L., et al (eds.) MICCAI 2022, vol. 13434, pp. 184–193. Springer, Cham (2022)

    Google Scholar 

  28. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16 × 16 words: transformers for image recognition at scale. In: Proceedings of the IEEE/CVF International Con-ference on Computer Vision. IEEE, Venice (2020)

    Google Scholar 

  29. Zhang, Z., Yu, L., Liang, X., et al.: TransCT: dual-path transformer for low dose computed tomography. In: de Bruijne, M., et al. (eds.) MICCAI 2021, vol. 12906, pp. 55–64. Springer, Cham (2021)

    Google Scholar 

  30. Zheng, H., Lin, Z., Zhou, Q., et al.: Multi-transSP: Multimodal transformer for survival prediction of nasopharyngeal carcinoma patients. In: Wang, L., et al. (eds.) MICCAI 2022, vol. 13437, pp. 234–243. Springer, Cham (2022)

    Google Scholar 

  31. Liu, Z., Lin, Y., Cao, Y., et al: Swin transformer: hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022. IEEE, Montreal (2021)

    Google Scholar 

  32. Hudson, H., Larkin, R.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13, 601–609 (1994)

    Article  Google Scholar 

  33. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142-3155. (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (NSFC 62071314), Sichuan Science and Technology Program 2023YFG0263, 2023NSFSC0497, 22YYJCYJ0086, and Opening Foundation of Agile and Intelligent Computing Key Laboratory of Sichuan Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Wang or Dinggang Shen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 53 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, J. et al. (2023). TriDo-Former: A Triple-Domain Transformer for Direct PET Reconstruction from Low-Dose Sinograms. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics