Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dual Arbitrary Scale Super-Resolution for Multi-contrast MRI

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14229))

Abstract

Limited by imaging systems, the reconstruction of Magnetic Resonance Imaging (MRI) images from partial measurement is essential to medical imaging research. Benefiting from the diverse and complementary information of multi-contrast MR images in different imaging modalities, multi-contrast Super-Resolution (SR) reconstruction is promising to yield SR images with higher quality. In the medical scenario, to fully visualize the lesion, radiologists are accustomed to zooming the MR images at arbitrary scales rather than using a fixed scale, as used by most MRI SR methods. In addition, existing multi-contrast MRI SR methods often require a fixed resolution for the reference image, which makes acquiring reference images difficult and imposes limitations on arbitrary scale SR tasks. To address these issues, we proposed an implicit neural representations based dual-arbitrary multi-contrast MRI super-resolution method, called Dual-ArbNet. First, we decouple the resolution of the target and reference images by a feature encoder, enabling the network to input target and reference images at arbitrary scales. Then, an implicit fusion decoder fuses the multi-contrast features and uses an Implicit Decoding Function (IDF) to obtain the final MRI SR results. Furthermore, we introduce a curriculum learning strategy to train our network, which improves the generalization and performance of our Dual-ArbNet. Extensive experiments in two public MRI datasets demonstrate that our method outperforms state-of-the-art approaches under different scale factors and has great potential in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ixi dataset. http://brain-development.org/ixi-dataset/. Accessed 20 Feb 2023

  2. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48 (2009)

    Google Scholar 

  3. Chen, W., et al.: Accuracy of 3-t MRI using susceptibility-weighted imaging to detect meniscal tears of the knee. Knee Surg. Sports Traumatol. Arthrosc. 23, 198–204 (2015)

    Article  Google Scholar 

  4. Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with local implicit image function. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8628–8638 (2021)

    Google Scholar 

  5. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5939–5948 (2019)

    Google Scholar 

  6. Dar, S.U., Yurt, M., Shahdloo, M., Ildız, M.E., Tınaz, B., Cukur, T.: Prior-guided image reconstruction for accelerated multi-contrast MRI via generative adversarial networks. IEEE J. Sel. Top. Signal Process. 14(6), 1072–1087 (2020)

    Article  Google Scholar 

  7. Feng, C.-M., Fu, H., Yuan, S., Xu, Y.: Multi-contrast MRI super-resolution via a multi-stage integration network. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 140–149. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_14

    Chapter  Google Scholar 

  8. Feng, C.M., Wang, K., Lu, S., Xu, Y., Li, X.: Brain MRI super-resolution using coupled-projection residual network. Neurocomputing 456, 190–199 (2021)

    Article  Google Scholar 

  9. Hu, X., Mu, H., Zhang, X., Wang, Z., Tan, T., Sun, J.: Meta-SR: a magnification-arbitrary network for super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1575–1584 (2019)

    Google Scholar 

  10. Jiang, C., et al.: Local implicit grid representations for 3D scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6001–6010 (2020)

    Google Scholar 

  11. Lee, J., Jin, K.H.: Local texture estimator for implicit representation function. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1929–1938 (2022)

    Google Scholar 

  12. Li, G., et al.: Transformer-empowered multi-scale contextual matching and aggregation for multi-contrast MRI super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20636–20645 (2022)

    Google Scholar 

  13. Li, G., Lyu, J., Wang, C., Dou, Q., Qin, J.: Wavtrans: synergizing wavelet and cross-attention transformer for multi-contrast mri super-resolution. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part VI. LNCS, vol. 13436, pp. 463–473. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_44

    Chapter  Google Scholar 

  14. Liu, X., Wang, J., Sun, H., Chandra, S.S., Crozier, S., Liu, F.: On the regularization of feature fusion and mapping for fast mr multi-contrast imaging via iterative networks. Magn. Reson. Imaging 77, 159–168 (2021)

    Article  Google Scholar 

  15. Lyu, Q., et al.: Multi-contrast super-resolution MRI through a progressive network. IEEE Trans. Med. Imaging 39(9), 2738–2749 (2020)

    Article  Google Scholar 

  16. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)

    Google Scholar 

  17. Nguyen, Q.H., Beksi, W.J.: Single image super-resolution via a dual interactive implicit neural network. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 4936–4945 (2023)

    Google Scholar 

  18. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepsDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  19. Plenge, E., et al.: Super-resolution methods in MRI: can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? Magn. Reson. Med. 68(6), 1983–1993 (2012)

    Article  Google Scholar 

  20. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. Adv. Neural. Inf. Process. Syst. 33, 7462–7473 (2020)

    Google Scholar 

  21. Sun, H., et al.: Extracting more for less: multi-echo mp2rage for simultaneous t1-weighted imaging, t1 mapping, mapping, SWI, and QSM from a single acquisition. Magn. Reson. Med. 83(4), 1178–1191 (2020)

    Article  Google Scholar 

  22. Tan, C., Zhu, J., Lio’, P.: Arbitrary scale super-resolution for brain MRI images. In: Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) AIAI 2020. IAICT, vol. 583, pp. 165–176. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49161-1_15

    Chapter  Google Scholar 

  23. Van Reeth, E., Tham, I.W., Tan, C.H., Poh, C.L.: Super-resolution in magnetic resonance imaging: a review. Concepts Magn. Reson. Part A 40(6), 306–325 (2012)

    Article  Google Scholar 

  24. Wang, L., Wang, Y., Lin, Z., Yang, J., An, W., Guo, Y.: Learning a single network for scale-arbitrary super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4801–4810 (2021)

    Google Scholar 

  25. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  26. Zbontar, J., et al.: fastMRI: an open dataset and benchmarks for accelerated mri. arXiv preprint arXiv:1811.08839 (2018)

  27. Zeng, K., Zheng, H., Cai, C., Yang, Y., Zhang, K., Chen, Z.: Simultaneous single-and multi-contrast super-resolution for brain MRI images based on a convolutional neural network. Comput. Biol. Med. 99, 133–141 (2018)

    Article  Google Scholar 

  28. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  29. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

  30. Zhou, B., Zhou, S.K.: DudorNet: learning a dual-domain recurrent network for fast MRI reconstruction with deep t1 prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4273–4282 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Nos. 62171251 & 62311530100), the Special Foundations for the Development of Strategic Emerging Industries of Shenzhen (Nos. JCYJ20200109143010272 & CJGJZD20210408092804011) and Oversea Cooperation Foundation of Tsinghua.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 56601 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Chi, Y., Lyu, J., Yang, W., Tian, Y. (2023). Dual Arbitrary Scale Super-Resolution for Multi-contrast MRI. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics