Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Pie-UNet: A Novel Parallel Interaction Encoder for Medical Image Segmentation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14255))

Included in the following conference series:

  • 1158 Accesses

Abstract

Most of the initial medical image segmentation methods based on deep learning adopt a full convolutional structure, while the fixed size of the convolutional window limits the modeling of long-range dependencies. ViT has powerful global modelling capabilities, but low-level feature detail is poorly represented. To address the above problems, we propose a novel encoder structure and design a new U-shaped network for medical image segmentation, called Pie-UNet. Firstly, facing the problem of lack of localization in ViT and lack of global perception in CNN, we complement each other by encoding global and local information separately and implementing both in a parallel interaction manner; meanwhile, we propose a network with local structure-aware ViT, called Rwin Transformer, to enhance the local detail representation of ViT itself; in addition, to further refine the local representation, we construct a focal modulator based on large kernels; finally, we propose a pre-fusion approach to optimize the information interaction between heterogeneous structures. The experimental results demonstrate that our proposed Pie-UNet can achieve optimal and accurate segmentation results compared with several existing medical image segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, J., et al.: TransuNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  2. Chen, M., et al.: Generative pretraining from pixels. In: International Conference on Machine Learning, pp. 1691–1703. PMLR (2020)

    Google Scholar 

  3. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  4. Gao, S.H., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.: Res2Net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 43(2), 652–662 (2019)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2117–2125 (2017)

    Google Scholar 

  7. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  8. Liu, Z., Mao, H., Wu, C.Y.: Christoph feichtenhofer trevor darrell and saining xie. a convnet for the 2020s. CoRR (2022)

    Google Scholar 

  9. Oktay, O., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 10 (2018)

  10. Peng, Z., et al.: Conformer: local features coupling global representations for visual recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 367–376 (2021)

    Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  13. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers and distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  14. Valanarasu, J.M.J., Patel, V.M.: UNeXt: MLP-Based Rapid Medical Image Segmentation Network. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention–MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol. 13435, pp. 23–33. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_3

  15. Wang, H., Cao, P., Wang, J., Zaiane, O.R.: UcTransNet: rethinking the skip connections in U-NET from a channel-wise perspective with transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2441–2449 (2022)

    Google Scholar 

  16. Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., Chen, L.-C.: Axial-DeepLab: stand-alone axial-attention for panoptic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 108–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_7

    Chapter  Google Scholar 

  17. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers. Adv. Neural. Inf. Process. Syst. 34, 12077–12090 (2021)

    Google Scholar 

  18. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  19. Yang, J., Li, C., Dai, X., Gao, J.: Focal modulation networks. Adv. Neural. Inf. Process. Syst. 35, 4203–4217 (2022)

    Google Scholar 

  20. Zhang, Y., Liu, H., Hu, Q.: TransFuse: fusing transformers and CNNs for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 14–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_2

    Chapter  Google Scholar 

  21. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-NET. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

  22. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  23. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 62102331, the Natural Science Foundation of Sichuan Province under Grant 2022NSFSC0839 and the Doctoral Research Fund Project of Southwest University of science and Technology 22zx7110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Y., Zhang, X., Chen, Y., Yang, S., Sun, F. (2023). Pie-UNet: A Novel Parallel Interaction Encoder for Medical Image Segmentation. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14255. Springer, Cham. https://doi.org/10.1007/978-3-031-44210-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44210-0_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44209-4

  • Online ISBN: 978-3-031-44210-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics