Abstract
We introduce Spatial Regular Expressions (SpREs) as a novel querying language for pattern matching over perception streams containing spatial and temporal data. To highlight the capabilities of SpREs, we developed the Strem tool as a matching framework that works in both the offline and online domain. We demonstrate the tool through an offline example with an AV dataset, an online example through an integration with the ROS and CARLA simulators, and an initial set of performance benchmarks on various SpRE queries. From our designed matching framework, we are able to find over 20,000 matches within 296 ms making it highly usable in runtime monitoring applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Aho, A.V.: Pattern matching in strings. In: Formal Language Theory, pp. 325–347. Elsevier (1980)
Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools. Addison-Wesley, Pearson (2020)
Alfred, V.: Algorithms for finding patterns in strings. In: Algorithms and Complexity, vol. 1, p. 255 (2014)
Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)
Bai, Z., et al.: Cyber mobility mirror: a deep learning-based real-world object perception platform using roadside LiDAR. IEEE Trans. Intell. Transp. Syst. 24, 9476–9489 (2023)
Balakrishnan, A., Deshmukh, J., Hoxha, B., Yamaguchi, T., Fainekos, G.: PerceMon: online monitoring for perception systems. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 297–308. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-9_18
Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The temporal logic sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 363–367. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4_33
Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10), 762–772 (1977)
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)
Del Bimbo, A., Vicario, E., Zingoni, D.: Symbolic description and visual querying of image sequences using spatio-temporal logic. IEEE Trans. Knowl. Data Eng. 7(4), 609–622 (1995)
Dokhanchi, A., Amor, H.B., Deshmukh, J.V., Fainekos, G.: Evaluating perception systems for autonomous vehicles using quality temporal logic. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 409–416. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_23
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Conference on Robot Learning, pp. 1–16. PMLR (2017)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)
Fang, W., et al.: Computer vision applications in construction safety assurance. Autom. Constr. 110, 103013 (2020)
Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Scenic: a language for scenario specification and scene generation. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 63–78 (2019)
Friedl, J.E.: Mastering Regular Expressions. O’Reilly Media Inc., Sebastopol (2006)
Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Combining spatial and temporal logics: expressiveness vs. complexity. J. Artif. Intell. Res. 23, 167–243 (2005)
Gallant, A.: regex-automata (2023). https://github.com/rust-lang/regex
Hekmatnejad, M., Hoxha, B., Deshmukh, J.V., Yang, Y., Fainekos, G.: Formalizing and evaluating requirements of perception systems for automated vehicles using spatio-temporal perception logic. arXiv preprint arXiv:2206.14372 (2022)
Janai, J., Güney, F., Behl, A., Geiger, A., et al.: Computer vision for autonomous vehicles: problems, datasets and state of the art. Found. Trends® Comput. Graph. Vis. 12(1–3), 1–308 (2020)
Kapach, K., Barnea, E., Mairon, R., Edan, Y., Ben-Shahar, O.: Computer vision for fruit harvesting robots-state of the art and challenges ahead. Int. J. Comput. Vis. Robot. 3(1–2), 4–34 (2012)
Kesten, R., et al.: Woven planet perception dataset 2020 (2019). https://woven.toyota/en/perception-dataset
Kim, E., et al.: Querying labelled data with scenario programs for sim-to-real validation. In: 2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS), pp. 34–45. IEEE (2022)
Knuth, D.E., Morris, J.H., Jr., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–350 (1977)
Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Spatial logic+ temporal logic=?. In: Handbook of Spatial Logics, pp. 497–564 (2007)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Lu, D., et al.: CAROM air-vehicle localization and traffic scene reconstruction from aerial videos. arXiv preprint arXiv:2306.00075 (2023)
Matsakis, N.D., Klock, F.S.: The rust language. ACM SIGAda Ada Lett. 34(3), 103–104 (2014)
Meng, T., Huang, J., Chew, C.M., Yang, D., Zhong, Z.: Configuration and design schemes of environmental sensing and vehicle computing systems for automated driving: a review. IEEE Sens. J. 23, 15305–15320 (2023)
Pitropov, M., et al.: Canadian adverse driving conditions dataset. Int. J. Robot. Res. 40(4–5), 681–690 (2021)
Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science (SFCS 1977), pp. 46–57. IEEE (1977)
Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, p. 5. No. 3.2 in 3, Kobe, Japan (2009)
Roşu, G., Bensalem, S.: Allen linear (interval) temporal logic – translation to LTL and monitor synthesis. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 263–277. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963_25
Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446–2454 (2020)
Thomas, G., Gade, R., Moeslund, T.B., Carr, P., Hilton, A.: Computer vision for sports: current applications and research topics. Comput. Vis. Image Underst. 159, 3–18 (2017)
Turtiainen, H., Costin, A., Lahtinen, T., Sintonen, L., Hamalainen, T.: Towards large-scale, automated, accurate detection of CCTV camera objects using computer vision. applications and implications for privacy, safety, and cybersecurity. arXiv preprint arXiv:2006.03870 (2020)
Ward, T.M., et al.: Computer vision in surgery. Surgery 169(5), 1253–1256 (2021)
Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1–2), 72–99 (1983)
Xiao, P., et al.: PandaSet: advanced sensor suite dataset for autonomous driving. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 3095–3101. IEEE (2021)
Xu, Z., Julius, A.A.: Census signal temporal logic inference for multiagent group behavior analysis. IEEE Trans. Autom. Sci. Eng. 15(1), 264–277 (2016)
Yadav, P., Curry, E.: VidCEP: complex event processing framework to detect spatiotemporal patterns in video streams. In: 2019 IEEE International conference on big data (big data), pp. 2513–2522. IEEE (2019)
Yu, F., et al.: Bdd100k: a diverse driving dataset for heterogeneous multitask learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2636–2645 (2020)
Zhang, Y., Carballo, A., Yang, H., Takeda, K.: Perception and sensing for autonomous vehicles under adverse weather conditions: a survey. ISPRS J. Photogrammetry Remote Sens. 196, 146–177 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Anderson, J., Fainekos, G., Hoxha, B., Okamoto, H., Prokhorov, D. (2023). Pattern Matching for Perception Streams. In: Katsaros, P., Nenzi, L. (eds) Runtime Verification. RV 2023. Lecture Notes in Computer Science, vol 14245. Springer, Cham. https://doi.org/10.1007/978-3-031-44267-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-44267-4_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44266-7
Online ISBN: 978-3-031-44267-4
eBook Packages: Computer ScienceComputer Science (R0)