Abstract
Pedestrian detection is an important part of the perception system of autonomous vehicles. Foggy and low-light conditions are quite challenging for pedestrian detection, and several models have been proposed to increase the robustness of detections under such challenging conditions. Checking if such a model performs well is largely evaluated by manually inspecting the results of object detection. We propose a monitoring technique that uses Timed Quality Temporal Logic (TQTL) to do differential testing: we first check when an object detector (such as vanilla YOLO) fails to accurately detect pedestrians using a suitable TQTL formula on a sequence of images. We then apply a model specialized to adverse weather conditions to perform object detection on the same image sequence. We use Image-Adaptive YOLO (IA-YOLO) for this purpose. We then check if the new model satisfies the previously failing specifications. Our method shows the feasibility of using such a differential testing approach to measure the improvement in quality of detections when specialized models are used for object detection.
S. Mallick and S. Ghosal—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Autonomous Vehicle Collision Reports. Technical report, California Department of Motor Vehicles (2023). www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-collision-reports/
Antonante, P., Spivak, D.I., Carlone, L.: Monitoring and Diagnosability of Perception Systems. arXiv:2005.11816 [cs] (2020)
Balakrishnan, A., Deshmukh, J., Hoxha, B., Yamaguchi, T., Fainekos, G.: PerceMon: online monitoring for perception systems. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 297–308. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-9_18
Balakrishnan, A., et al.: Specifying and evaluating quality metrics for vision-based perception systems. In: 2019 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1433–1438 (2019). https://doi.org/10.23919/DATE.2019.8715114
Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Dokhanchi, A., Amor, H.B., Deshmukh, J.V., Fainekos, G.: Evaluating perception systems for autonomous vehicles using quality temporal logic. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 409–416. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_23
Dokhanchi, A., Hoxha, B., Tuncali, C.E., Fainekos, G.: An efficient algorithm for monitoring practical TPTL specifications. In: 2016 ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE), pp. 184–193. IEEE (2016)
Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111(1), 98–136 (2015). https://doi.org/10.1007/s11263-014-0733-5
Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)
Hekmatnejad, M.: Formalizing Safety, Perception, and Mission Requirements for Testing and Planning in Autonomous Vehicles. Ph.D. thesis, Arizona State University (2021)
Hu, Y., He, H., Xu, C., Wang, B., Lin, S.: Exposure: a white-box photo post-processing framework. ACM Trans. Graph. (TOG) 37(2), 1–17 (2018)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Liu, W., Ren, G., Yu, R., Guo, S., Zhu, J., Zhang, L.: Image-adaptive YOLO for object detection in adverse weather conditions. In: Proceedings of the AAAI Conference on Artificial Intelligence (2022)
Michaelis, C., et al.: Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming (2020). arXiv:1907.07484 [cs, stat]
Narasimhan, S.G., Nayar, S.K.: Chromatic framework for vision in bad weather. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), vol. 1, pp. 598–605. IEEE (2000)
Padilla, R., Netto, S.L., da Silva, E.A.B.: A survey on performance metrics for object-detection algorithms. In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 237–242 (2020). https://doi.org/10.1109/IWSSIP48289.2020.9145130, iSSN: 2157-8702
Padilla, R., Passos, W.L., Dias, T.L.B., Netto, S.L., da Silva, E.A.B.: A comparative analysis of object detection metrics with a companion open-source toolkit. Electronics 10(3), 279 (2021). https://doi.org/10.3390/electronics10030279
Qin, Q., Chang, K., Huang, M., Li, G.: DENet: detection-driven enhancement network for object detection under adverse weather conditions. In: Proceedings of the Asian Conference on Computer Vision, pp. 2813–2829 (2022)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Instant dehazing of images using polarization. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I–I. IEEE (2001)
Teeti, I., Musat, V., Khan, S., Rast, A., Cuzzolin, F., Bradley, A.: Vision in adverse weather: Augmentation using CycleGANs with various object detectors for robust perception in autonomous racing (2023). arXiv:2201.03246 [cs]
Wu, B., Iandola, F., Jin, P.H., Keutzer, K.: SqueezeDet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 129–137 (2017)
Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from large-scale video datasets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2174–2182 (2017)
Xu, Y., Weaver, J.B., Healy, D.M., Lu, J.: Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE Trans. Image Process. 3(6), 747–758 (1994)
Acknowledgement
The authors would like to thank the anonymous reviewers for their feedback. This work was supported by the National Science Foundation through the following grants: CAREER award (SHF-2048094), CNS-1932620, CNS-2039087, FMitF-1837131, CCF-SHF-1932620, the Airbus Institute for Engineering Research, and funding by Toyota R &D and Siemens Corporate Research through the USC Center for Autonomy and AI.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mallick, S., Ghosal, S., Balakrishnan, A., Deshmukh, J. (2023). Safety Monitoring for Pedestrian Detection in Adverse Conditions. In: Katsaros, P., Nenzi, L. (eds) Runtime Verification. RV 2023. Lecture Notes in Computer Science, vol 14245. Springer, Cham. https://doi.org/10.1007/978-3-031-44267-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-44267-4_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44266-7
Online ISBN: 978-3-031-44267-4
eBook Packages: Computer ScienceComputer Science (R0)