Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Safety Monitoring for Pedestrian Detection in Adverse Conditions

  • Conference paper
  • First Online:
Runtime Verification (RV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14245))

Included in the following conference series:

Abstract

Pedestrian detection is an important part of the perception system of autonomous vehicles. Foggy and low-light conditions are quite challenging for pedestrian detection, and several models have been proposed to increase the robustness of detections under such challenging conditions. Checking if such a model performs well is largely evaluated by manually inspecting the results of object detection. We propose a monitoring technique that uses Timed Quality Temporal Logic (TQTL) to do differential testing: we first check when an object detector (such as vanilla YOLO) fails to accurately detect pedestrians using a suitable TQTL formula on a sequence of images. We then apply a model specialized to adverse weather conditions to perform object detection on the same image sequence. We use Image-Adaptive YOLO (IA-YOLO) for this purpose. We then check if the new model satisfies the previously failing specifications. Our method shows the feasibility of using such a differential testing approach to measure the improvement in quality of detections when specialized models are used for object detection.

S. Mallick and S. Ghosal—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Autonomous Vehicle Collision Reports. Technical report, California Department of Motor Vehicles (2023). www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-collision-reports/

  2. Antonante, P., Spivak, D.I., Carlone, L.: Monitoring and Diagnosability of Perception Systems. arXiv:2005.11816 [cs] (2020)

  3. Balakrishnan, A., Deshmukh, J., Hoxha, B., Yamaguchi, T., Fainekos, G.: PerceMon: online monitoring for perception systems. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 297–308. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-9_18

    Chapter  Google Scholar 

  4. Balakrishnan, A., et al.: Specifying and evaluating quality metrics for vision-based perception systems. In: 2019 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1433–1438 (2019). https://doi.org/10.23919/DATE.2019.8715114

  5. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  6. Dokhanchi, A., Amor, H.B., Deshmukh, J.V., Fainekos, G.: Evaluating perception systems for autonomous vehicles using quality temporal logic. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 409–416. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_23

    Chapter  Google Scholar 

  7. Dokhanchi, A., Hoxha, B., Tuncali, C.E., Fainekos, G.: An efficient algorithm for monitoring practical TPTL specifications. In: 2016 ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE), pp. 184–193. IEEE (2016)

    Google Scholar 

  8. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111(1), 98–136 (2015). https://doi.org/10.1007/s11263-014-0733-5

    Article  Google Scholar 

  9. Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  11. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  12. Hekmatnejad, M.: Formalizing Safety, Perception, and Mission Requirements for Testing and Planning in Autonomous Vehicles. Ph.D. thesis, Arizona State University (2021)

    Google Scholar 

  13. Hu, Y., He, H., Xu, C., Wang, B., Lin, S.: Exposure: a white-box photo post-processing framework. ACM Trans. Graph. (TOG) 37(2), 1–17 (2018)

    Article  Google Scholar 

  14. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  16. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  17. Liu, W., Ren, G., Yu, R., Guo, S., Zhu, J., Zhang, L.: Image-adaptive YOLO for object detection in adverse weather conditions. In: Proceedings of the AAAI Conference on Artificial Intelligence (2022)

    Google Scholar 

  18. Michaelis, C., et al.: Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming (2020). arXiv:1907.07484 [cs, stat]

  19. Narasimhan, S.G., Nayar, S.K.: Chromatic framework for vision in bad weather. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), vol. 1, pp. 598–605. IEEE (2000)

    Google Scholar 

  20. Padilla, R., Netto, S.L., da Silva, E.A.B.: A survey on performance metrics for object-detection algorithms. In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 237–242 (2020). https://doi.org/10.1109/IWSSIP48289.2020.9145130, iSSN: 2157-8702

  21. Padilla, R., Passos, W.L., Dias, T.L.B., Netto, S.L., da Silva, E.A.B.: A comparative analysis of object detection metrics with a companion open-source toolkit. Electronics 10(3), 279 (2021). https://doi.org/10.3390/electronics10030279

    Article  Google Scholar 

  22. Qin, Q., Chang, K., Huang, M., Li, G.: DENet: detection-driven enhancement network for object detection under adverse weather conditions. In: Proceedings of the Asian Conference on Computer Vision, pp. 2813–2829 (2022)

    Google Scholar 

  23. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  24. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  25. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  26. Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Instant dehazing of images using polarization. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I–I. IEEE (2001)

    Google Scholar 

  27. Teeti, I., Musat, V., Khan, S., Rast, A., Cuzzolin, F., Bradley, A.: Vision in adverse weather: Augmentation using CycleGANs with various object detectors for robust perception in autonomous racing (2023). arXiv:2201.03246 [cs]

  28. Wu, B., Iandola, F., Jin, P.H., Keutzer, K.: SqueezeDet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 129–137 (2017)

    Google Scholar 

  29. Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from large-scale video datasets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2174–2182 (2017)

    Google Scholar 

  30. Xu, Y., Weaver, J.B., Healy, D.M., Lu, J.: Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE Trans. Image Process. 3(6), 747–758 (1994)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the anonymous reviewers for their feedback. This work was supported by the National Science Foundation through the following grants: CAREER award (SHF-2048094), CNS-1932620, CNS-2039087, FMitF-1837131, CCF-SHF-1932620, the Airbus Institute for Engineering Research, and funding by Toyota R &D and Siemens Corporate Research through the USC Center for Autonomy and AI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuvam Ghosal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mallick, S., Ghosal, S., Balakrishnan, A., Deshmukh, J. (2023). Safety Monitoring for Pedestrian Detection in Adverse Conditions. In: Katsaros, P., Nenzi, L. (eds) Runtime Verification. RV 2023. Lecture Notes in Computer Science, vol 14245. Springer, Cham. https://doi.org/10.1007/978-3-031-44267-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44267-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44266-7

  • Online ISBN: 978-3-031-44267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics