Abstract
We proposed a self-supervised machine learning method to automatically rate the severity of pulmonary edema in the frontal chest X-ray radiographs (CXR) which could be potentially related to COVID-19 viral pneumonia. For this we use the modified radiographic assessment of lung edema (mRALE) scoring system. The new model was first optimized with the simple Siamese network (SimSiam) architecture where a ResNet-50 pretrained by ImageNet database was used as the backbone. The encoder projected a 2048-dimension embedding as representation features to a downstream fully connected deep neural network for mRALE score prediction. A 5-fold cross-validation with 2,599 frontal CXRs was used to examine the new model’s performance with comparison to a non-pretrained SimSiam encoder and a ResNet-50 trained from scratch. The mean absolute error (MAE) of the new model is 5.05 (95%CI 5.03–5.08), the mean squared error (MSE) is 66.67 (95%CI 66.29–67.06), and the Spearman's correlation coefficient (Spearman ρ) to the expert-annotated scores is 0.77 (95%CI 0.75–0.79). All the performance metrics of the new model are superior to the two comparators (P < 0.01), and the scores of MSE and Spearman ρ of the two comparators have no statistical difference (P > 0.05). The model also achieved a prediction probability concordance of 0.811 and a quadratic weighted kappa of 0.739 with the medical expert annotations in external validation. We conclude that the self-supervised contrastive learning method is an effective strategy for mRALE automated scoring. It provides a new approach to improve machine learning performance and minimize the expert knowledge involvement in quantitative medical image pattern learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
WHO, WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/. Accessed 02 July 2023
Taniguchi, H., Ohya, A., Yamagata, H., Iwashita, M., Abe, T., Takeuchi, I.: Prolonged mechanical ventilation in patients with severe COVID-19 is associated with serial modified-lung ultrasound scores: a single-centre cohort study. PLoS ONE 17(7), e0271391 (2022)
Valk, C.M.A., Zimatore, C., Mazzinari, G., Pierrakos, C., Sivakorn, C., Dechsanga, J., et al.: The prognostic capacity of the radiographic assessment for lung edema score in patients with COVID-19 acute respiratory distress syndrome-an international multicenter observational study. Front Med (Lausanne) 8, 772056 (2021)
Warren, M.A., Zhao, Z., Koyama, T., Bastarache, J.A., Shaver, C.M., Semler, M.W., et al.: Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ARDS. Thorax 73(9), 840–846 (2018)
Matthay, M.A., Ware, L.B., Zimmerman, G.A.: The acute respiratory distress syndrome. J. Clin. Invest. 122(8), 2731–2740 (2012)
Voigt, I., Mighali, M., Manda, D., Aurich, P., Bruder, O.: Radiographic assessment of lung edema (RALE) score is associated with clinical outcomes in patients with refractory cardiogenic shock and refractory cardiac arrest after percutaneous implantation of extracorporeal life support. Intern. Emerg. Med. 17(5), 1463–1470 (2022)
Aggarwal, P., Mishra, N.K., Fatimah, B., Singh, P., Gupta, A., Joshi, S.D.: COVID-19 image classification using deep learning: advances, challenges and opportunities. Comput. Biol. Med. 144, 105350 (2022)
Khattab, R., Abdelmaksoud, I.R., Abdelrazek, S.: Deep convolutional neural networks for detecting COVID-19 using medical images: a survey. New Gener. Comput. 41(2), 343–400 (2023)
Xie, W., Jacobs, C., Charbonnier, J.P., van Ginneken, B.: Dense regression activation maps for lesion segmentation in CT scans of COVID-19 patients. Med. Image Anal. 86, 102771 (2023)
Meng, Y., Bridge, J., Addison, C., Wang, M., Merritt, C., Franks, S., et al.: Bilateral adaptive graph convolutional network on CT based Covid-19 diagnosis with uncertainty-aware consensus-assisted multiple instance learning. Med. Image Anal. 84, 102722 (2023)
Signoroni, A., Savardi, M., Benini, S., Adami, N., Leonardi, R., Gibellini, P., et al.: BS-Net: learning COVID-19 pneumonia severity on a large chest X-ray dataset. Med. Image Anal. 71, 102046 (2021)
Rahman, A., Hossain, M.S., Alrajeh, N.A., Alsolami, F.: Adversarial examples-security threats to COVID-19 deep learning systems in medical IoT devices. IEEE Internet Things J. 8(12), 9603–9610 (2021)
Li, Y., Liu, S.: The threat of adversarial attack on a COVID-19 CT image-based deep learning system. Bioengineering (Basel) 10(2), 194 (2023)
Liang, Z., Huang, J.X., Sameer, A.: Image translation by ad CycleGAN for COVID-19 X-ray images: a new approach for controllable GAN. Sensors (Basel) 22(24), 9628 (2022)
Li, M.D., Arun, N.T., Gidwani, M., Chang, K., Deng, F., Little, B.P., et al.: Automated assessment and tracking of COVID-19 pulmonary disease severity on chest radiographs using convolutional siamese neural networks. Radiol. Artif. Intell. 2(4), e200079 (2020)
Horng, S., Liao, R., Wang, X., Dalal, S., Golland, P., Berkowitz, S.J.: Deep learning to quantify pulmonary edema in chest radiographs. Radiol. Artif. Intell. 3(2), e190228 (2021)
Tian, Y., Chen, X., Ganguli, S.: Understanding self-supervised learning dynamics without contrastive pairs. In: Proceedings of the 38th International Conference on Machine Learning, vol. 139, pp. 10268–10278. MLR Press, (2021)
Chen, X., He, K.: Exploring simple siamese representation learning. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Nashville (2021)
MIDRC, MIDRC mRALE Mastermind Challenge: AI to predict COVID severity on chest radiographs. https://www.midrc.org/mrale-mastermind-2023. Accessed 02 July 2023
Funding
This research is supported by the Intramural Research Program of the National Library of Medicine, National Institutes of Health.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liang, Z., Xue, Z., Rajaraman, S., Feng, Y., Antani, S. (2023). Automatic Quantification of COVID-19 Pulmonary Edema by Self-supervised Contrastive Learning. In: Xue, Z., et al. Medical Image Learning with Limited and Noisy Data. MILLanD 2023. Lecture Notes in Computer Science, vol 14307. Springer, Cham. https://doi.org/10.1007/978-3-031-44917-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-44917-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47196-4
Online ISBN: 978-3-031-44917-8
eBook Packages: Computer ScienceComputer Science (R0)